This paper studies the expressive power of artificial neural networks with rectified linear units. In order to study them as a model of real-valued computation, we introduce the concept of Max-Affine Arithmetic Programs and show equivalence between them and neural networks concerning natural complexity measures. We then use this result to show that two fundamental combinatorial optimization problems can be solved with polynomial-size neural networks. First, we show that for any undirected graph with $n$ nodes, there is a neural network (with fixed weights and biases) of size $\mathcal{O}(n^3)$ that takes the edge weights as input and computes the value of a minimum spanning tree of the graph. Second, we show that for any directed graph with $n$ nodes and $m$ arcs, there is a neural network of size $\mathcal{O}(m^2n^2)$ that takes the arc capacities as input and computes a maximum flow. Our results imply that these two problems can be solved with strongly polynomial time algorithms that solely uses affine transformations and maxima computations, but no comparison-based branchings.
翻译:本文研究了具有纠正线性单位的人工神经网络的表达力。 为了研究它们作为实际计算模型的模型, 我们引入了 Max- Affine Arithmatic 程序的概念, 并显示它们与神经网络在自然复杂度测量方面的等值。 然后我们用这个结果来显示, 两个基本的组合优化问题可以用多面规模神经网络来解决。 首先, 我们用美元节点来显示, 对于任何非方向的图形, 一个大小为$nddes的神经网络( 固定重量和偏向) $\mathcal{O}( n3) 的神经网络( ) 。 我们的结果表明, 这两个问题可以用强烈的多面形时间比较来解决, 并计算图中最小的宽度树的价值。 其次, 我们用美元和美元弧值的直线形图显示, 一个大小为 $\mathcal{O}( m\\\\ 2 n2) 的神经网络, 其大小以弧度为输入和计算最大流量。 我们的结果表明, 这两个问题可以通过强烈的多面时间比较来解算法解决, 。