EEG-based tinnitus classification is a valuable tool for tinnitus diagnosis, research, and treatments. Most current works are limited to a single dataset where data patterns are similar. But EEG signals are highly non-stationary, resulting in model's poor generalization to new users, sessions or datasets. Thus, designing a model that can generalize to new datasets is beneficial and indispensable. To mitigate distribution discrepancy across datasets, we propose to achieve Disentangled and Side-aware Unsupervised Domain Adaptation (DSUDA) for cross-dataset tinnitus diagnosis. A disentangled auto-encoder is developed to decouple class-irrelevant information from the EEG signals to improve the classifying ability. The side-aware unsupervised domain adaptation module adapts the class-irrelevant information as domain variance to a new dataset and excludes the variance to obtain the class-distill features for the new dataset classification. It also align signals of left and right ears to overcome inherent EEG pattern difference. We compare DSUDA with state-of-the-art methods, and our model achieves significant improvements over competitors regarding comprehensive evaluation criteria. The results demonstrate our model can successfully generalize to a new dataset and effectively diagnose tinnitus.
翻译:以 EEG 为基础的锡尼图斯 分类是一种宝贵的工具, 用于锡尼图的诊断、 研究和处理。 多数目前的工程仅限于一个数据模式相似的单一数据集。 但 EEG 信号高度不固定, 导致模型对新用户、 会话或数据集的概括化不甚理想。 因此, 设计一个能够向新数据集推广的模型是有益和不可或缺的。 为了减少各数据集之间的分布差异, 我们提议实现分解和侧辨不为人知的Domain适应( DSUDA), 以进行交叉数据定型诊断。 我们开发了一个分离的自动编码, 将EEEG 信号中与类相关的信息脱钩, 以提高分类能力。 侧向的域适应模块将与分类相关的信息作为域差异来适应新数据集, 并排除差异, 以获得新数据集分类的级淡化特性。 我们还将左耳和右耳信号相匹配, 以克服内在的 EEG型模式差异。 我们将DSUDDA 与州- Art 模型进行比较, 并成功展示了我们关于普通分析结果的模型。