Conditional Normalizing Flows (CNFs) are flexible generative models capable of representing complicated distributions with high dimensionality and large interdimensional correlations, making them appealing for structured output learning. Their effectiveness in modelling multivariates spatio-temporal structured data has yet to be completely investigated. We propose MotionFlow as a novel normalizing flows approach that autoregressively conditions the output distributions on the spatio-temporal input features. It combines deterministic and stochastic representations with CNFs to create a probabilistic neural generative approach that can model the variability seen in high-dimensional structured spatio-temporal data. We specifically propose to use conditional priors to factorize the latent space for the time dependent modeling. We also exploit the use of masked convolutions as autoregressive conditionals in CNFs. As a result, our method is able to define arbitrarily expressive output probability distributions under temporal dynamics in multivariate prediction tasks. We apply our method to different tasks, including trajectory prediction, motion prediction, time series forecasting, and binary segmentation, and demonstrate that our model is able to leverage normalizing flows to learn complicated time dependent conditional distributions.
翻译:条件正常流动(CNFs)是灵活的基因模型,能够代表具有高维度和大多维关联的复杂分布,使其吸引结构化输出学习。它们建模多变量平时结构化数据的有效性还有待彻底调查。我们提议将移动法作为一种新颖的正常流法,它自动地使时空输入功能的输出分布成为条件。它将确定性和随机分析的表达形式与CFFs结合起来,以创建一种稳定神经基因模型,以模拟高维结构的瞬时数据所看到的变异性。我们特别提议使用有条件的先期将潜在空间乘以取决于时间的建模。我们还利用遮蔽的回流作为CNFs的自动反向性条件。因此,我们的方法能够在多变量预测任务中确定在时间动态下任意的明示产出概率分布。我们的方法可以适用于不同的任务,包括轨迹预测、运动预测、时间序列预测、硬性时间序列预测和硬性分流,并显示我们能够进行正常的回移的回移。