This paper introduces a novel neural network - flow completion network (FCN) - to infer the fluid dynamics, includ-ing the flow field and the force acting on the body, from the incomplete data based on Graph Convolution AttentionNetwork. The FCN is composed of several graph convolution layers and spatial attention layers. It is designed to inferthe velocity field and the vortex force contribution of the flow field when combined with the vortex force map (VFM)method. Compared with other neural networks adopted in fluid dynamics, the FCN is capable of dealing with bothstructured data and unstructured data. The performance of the proposed FCN is assessed by the computational fluiddynamics (CFD) data on the flow field around a circular cylinder. The force coefficients predicted by our model arevalidated against those obtained directly from CFD. Moreover, it is shown that our model effectively utilizes the exist-ing flow field information and the gradient information simultaneously, giving a better performance than the traditionalconvolution neural network (CNN)-based and deep neural network (DNN)-based models. Specifically, among all thecases of different Reynolds numbers and different proportions of the training dataset, the results show that the proposedFCN achieves a maximum norm mean square error of 5.86% in the test dataset, which is much lower than those of thetraditional CNN-based and DNN-based models (42.32% and 15.63% respectively).


翻译:本文介绍一个新的神经网络-流动完成网络(FCN),以便从基于“Greg Convolution CondenteNetwork”的不完整数据中推断流体动态,将流体字段和在身体上发挥作用的力量从基于“Greg Convolution Convolution Convolution”Network 的不完整数据中填入。FCN由数个图形递增层和空间关注层组成,目的是在与“旋力图(VFM)方法”相结合时,将流体字段的速位场和涡旋力作用推入一个新的神经网络。与流动动态中采用的其他神经网络相比,FCN能够同时处理结构化数据和无结构化数据。拟议的FCN的性能既包括结构化数据和无结构化数据,又包括结构化数据,即由计算流体流动力动力动力动力数据数据数据数据(DNNF)的数据(DNF)的性能,具体地说,我们模型中的现有流动流流流流和梯信息信息比传统的神经网络(CN)的基础和深神经网络(DNNNL)的性数据(D)网络(D)更低的值网络(D)数据(D)数据(DNNF)的模型中,以不同标准数据(D)的模型和以不同标准数据比例,以不同的标准数据(DRMRAS标准数据,以不同比例为最不同的数据和标准数据,以最不同的数据,分别为标准的数据为标准,以最不同的比例。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
13+阅读 · 2021年6月14日
Hierarchical Graph Capsule Network
Arxiv
20+阅读 · 2020年12月16日
Arxiv
14+阅读 · 2019年9月11日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员