This paper introduces a novel neural network - flow completion network (FCN) - to infer the fluid dynamics, includ-ing the flow field and the force acting on the body, from the incomplete data based on Graph Convolution AttentionNetwork. The FCN is composed of several graph convolution layers and spatial attention layers. It is designed to inferthe velocity field and the vortex force contribution of the flow field when combined with the vortex force map (VFM)method. Compared with other neural networks adopted in fluid dynamics, the FCN is capable of dealing with bothstructured data and unstructured data. The performance of the proposed FCN is assessed by the computational fluiddynamics (CFD) data on the flow field around a circular cylinder. The force coefficients predicted by our model arevalidated against those obtained directly from CFD. Moreover, it is shown that our model effectively utilizes the exist-ing flow field information and the gradient information simultaneously, giving a better performance than the traditionalconvolution neural network (CNN)-based and deep neural network (DNN)-based models. Specifically, among all thecases of different Reynolds numbers and different proportions of the training dataset, the results show that the proposedFCN achieves a maximum norm mean square error of 5.86% in the test dataset, which is much lower than those of thetraditional CNN-based and DNN-based models (42.32% and 15.63% respectively).
翻译:本文介绍一个新的神经网络-流动完成网络(FCN),以便从基于“Greg Convolution CondenteNetwork”的不完整数据中推断流体动态,将流体字段和在身体上发挥作用的力量从基于“Greg Convolution Convolution Convolution”Network 的不完整数据中填入。FCN由数个图形递增层和空间关注层组成,目的是在与“旋力图(VFM)方法”相结合时,将流体字段的速位场和涡旋力作用推入一个新的神经网络。与流动动态中采用的其他神经网络相比,FCN能够同时处理结构化数据和无结构化数据。拟议的FCN的性能既包括结构化数据和无结构化数据,又包括结构化数据,即由计算流体流动力动力动力动力数据数据数据数据(DNNF)的数据(DNF)的性能,具体地说,我们模型中的现有流动流流流流和梯信息信息比传统的神经网络(CN)的基础和深神经网络(DNNNL)的性数据(D)网络(D)更低的值网络(D)数据(D)数据(DNNF)的模型中,以不同标准数据(D)的模型和以不同标准数据比例,以不同的标准数据(DRMRAS标准数据,以不同比例为最不同的数据和标准数据,以最不同的数据,分别为标准的数据为标准,以最不同的比例。