Multi-modal medical image completion has been extensively applied to alleviate the missing modality issue in a wealth of multi-modal diagnostic tasks. However, for most existing synthesis methods, their inferences of missing modalities can collapse into a deterministic mapping from the available ones, ignoring the uncertainties inherent in the cross-modal relationships. Here, we propose the Unified Multi-Modal Conditional Score-based Generative Model (UMM-CSGM) to take advantage of Score-based Generative Model (SGM) in modeling and stochastically sampling a target probability distribution, and further extend SGM to cross-modal conditional synthesis for various missing-modality configurations in a unified framework. Specifically, UMM-CSGM employs a novel multi-in multi-out Conditional Score Network (mm-CSN) to learn a comprehensive set of cross-modal conditional distributions via conditional diffusion and reverse generation in the complete modality space. In this way, the generation process can be accurately conditioned by all available information, and can fit all possible configurations of missing modalities in a single network. Experiments on BraTS19 dataset show that the UMM-CSGM can more reliably synthesize the heterogeneous enhancement and irregular area in tumor-induced lesions for any missing modalities.
翻译:在许多多模式诊断任务中,多模式医学图像的完成被广泛应用,以缓解缺失的模式问题,然而,对于大多数现有的综合方法,其缺失模式的推论可能会从现有模式的确定性绘图中崩溃,忽视跨模式关系中固有的不确定性。在这里,我们提议采用统一多模式有条件分数生成模型(UMM-CSGM),利用基于分数的生成模型(SGM)进行建模和对目标概率分布进行随机抽样抽样抽样,并将SGM进一步扩展至统一框架内各种失踪模式配置的跨模式有条件合成。具体地说,UMM-CSGM采用新颖的多模式性条件评分网络(mm-CSN)学习一套综合的跨模式有条件分布,通过有条件的传播和在完整模式空间反向生成。这样,生成过程可以精确地以所有现有信息为条件进行建模,并且能够将所有可能的缺失模式配置纳入一个单一网络。具体地说,BMM-CM-CM(BAR19)的实验可以更可靠地模拟的变现系统(MARMM)中的任何变现系统。