Recent works have shown that 3D-aware GANs trained on unstructured single image collections can generate multiview images of novel instances. The key underpinnings to achieve this are a 3D radiance field generator and a volume rendering process. However, existing methods either cannot generate high-resolution images (e.g., up to 256X256) due to the high computation cost of neural volume rendering, or rely on 2D CNNs for image-space upsampling which jeopardizes the 3D consistency across different views. This paper proposes a novel 3D-aware GAN that can generate high resolution images (up to 1024X1024) while keeping strict 3D consistency as in volume rendering. Our motivation is to achieve super-resolution directly in the 3D space to preserve 3D consistency. We avoid the otherwise prohibitively-expensive computation cost by applying 2D convolutions on a set of 2D radiance manifolds defined in the recent generative radiance manifold (GRAM) approach, and apply dedicated loss functions for effective GAN training at high resolution. Experiments on FFHQ and AFHQv2 datasets show that our method can produce high-quality 3D-consistent results that significantly outperform existing methods.
翻译:最近的工作表明,在非结构化单一图像收藏方面受过培训的3D华GANs 能够生成多视图像。实现这一点的关键基础是一个 3D 弧光场生成器和一个量制过程。然而,现有的方法要么无法生成高分辨率图像(例如,高达256X256),因为神经体积生成的计算成本很高,要么依靠2DCNN进行图像-空间扫描,从而破坏不同观点的3D一致性。本文建议建立一个新型的 3D-aware GAN,能够生成高分辨率图像(最高达1024X1024),同时保持3D在体积制作方面的严格一致性。我们的动机是在 3D 空间直接实现超级分辨率以保持3D一致性。我们避免了其他令人无法接受的昂贵计算成本,方法是对最近发光拉亮多元(GRAM) 方法中定义的一套2D光度柱进行2D演算,并对高分辨率GAN培训应用专门的损失功能。在 FFHQ 和AFHVD2 数据模型中显著显示我们的方法可以产生高质量。