Face image retrieval, which searches for images of the same identity from the query input face image, is drawing more attention as the size of the image database increases rapidly. In order to conduct fast and accurate retrieval, a compact hash code-based methods have been proposed, and recently, deep face image hashing methods with supervised classification training have shown outstanding performance. However, classification-based scheme has a disadvantage in that it cannot reveal complex similarities between face images into the hash code learning. In this paper, we attempt to improve the face image retrieval quality by proposing a Similarity Guided Hashing (SGH) method, which gently considers self and pairwise-similarity simultaneously. SGH employs various data augmentations designed to explore elaborate similarities between face images, solving both intra and inter identity-wise difficulties. Extensive experimental results on the protocols with existing benchmarks and an additionally proposed large scale higher resolution face image dataset demonstrate that our SGH delivers state-of-the-art retrieval performance.


翻译:搜索来自查询输入面部图像的相同身份图像的面部图像检索,随着图像数据库的大小迅速增加而引起更多的注意。为了快速和准确地检索,提出了基于散码的紧凑方法,最近,通过监督分类培训的深面图像散射方法表现出了杰出的绩效。然而,基于分类的办法有一个缺点,因为它无法在散列代码学习中显示面部图像之间的复杂相似之处。在本文中,我们试图通过提出一种相似性制导散射法(SGH)来改进面部图像检索质量,该方法可以同时轻轻地考虑自我和对称的相似性。 SGH采用各种数据扩增功能,旨在探索面部图像之间的复杂相似性,解决身份方面的内部和内部困难。关于协议的广泛实验结果以及现有的基准和另外提议的大规模高分辨率图像数据集表明,我们的SGH提供最先进的检索性能。

0
下载
关闭预览

相关内容

从20世纪70年代开始,有关图像检索的研究就已开始,当时主要是基于文本的图像检索技术(Text-based Image Retrieval,简称TBIR),利用文本描述的方式描述图像的特征,如绘画作品的作者、年代、流派、尺寸等。到90年代以后,出现了对图像的内容语义,如图像的颜色、纹理、布局等进行分析和检索的图像检索技术,即基于内容的图像检索(Content-based Image Retrieval,简称CBIR)技术。CBIR属于基于内容检索(Content-based Retrieval,简称CBR)的一种,CBR中还包括对动态视频、音频等其它形式多媒体信息的检索技术。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
AAAI2020 图相关论文集
图与推荐
10+阅读 · 2020年7月15日
Hierarchically Structured Meta-learning
CreateAMind
25+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
16+阅读 · 2021年1月27日
A survey on deep hashing for image retrieval
Arxiv
14+阅读 · 2020年6月10日
Arxiv
9+阅读 · 2018年5月7日
Arxiv
5+阅读 · 2018年3月6日
VIP会员
相关VIP内容
相关资讯
AAAI2020 图相关论文集
图与推荐
10+阅读 · 2020年7月15日
Hierarchically Structured Meta-learning
CreateAMind
25+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员