The high efficiency in computation and storage makes hashing (including binary hashing and quantization) a common strategy in large-scale retrieval systems. To alleviate the reliance on expensive annotations, unsupervised deep hashing becomes an important research problem. This paper provides a novel solution to unsupervised deep quantization, namely Contrastive Quantization with Code Memory (MeCoQ). Different from existing reconstruction-based strategies, we learn unsupervised binary descriptors by contrastive learning, which can better capture discriminative visual semantics. Besides, we uncover that codeword diversity regularization is critical to prevent contrastive learning-based quantization from model degeneration. Moreover, we introduce a novel quantization code memory module that boosts contrastive learning with lower feature drift than conventional feature memories. Extensive experiments on benchmark datasets show that MeCoQ outperforms state-of-the-art methods.
翻译:计算和储存的高效率使散列( 包括二进制散列和量化) 成为大规模检索系统中的共同战略。 为了减轻对昂贵的注释的依赖, 不受监督的深度散列成为一个重要的研究问题。 本文为不受监督的深层量化提供了一种新的解决方案, 即与代码内存( MeCoQ) 的对比量化。 与现有的基于重建的战略不同, 我们通过对比性学习来学习不受监督的二进制描述符, 这可以更好地捕捉歧视性的视觉语义。 此外, 我们发现, 代码多样性的规范化对于防止模型的脱代作用中以对比性学习为基础的量化至关重要。 此外, 我们引入了一个新型的四进制代码内存模块, 用比常规特征记忆低的特征漂移来推动对比性学习。 对基准数据集的广泛实验显示, MecoQ 超越了最先进的方法。