Hashing has attracted increasing research attentions in recent years due to its high efficiency of computation and storage in image retrieval. Recent works have demonstrated the superiority of simultaneous feature representations and hash functions learning with deep neural networks. However, most existing deep hashing methods directly learn the hash functions by encoding the global semantic information, while ignoring the local spatial information of images. The loss of local spatial structure makes the performance bottleneck of hash functions, therefore limiting its application for accurate similarity retrieval. In this work, we propose a novel Deep Ordinal Hashing (DOH) method, which learns ordinal representations by leveraging the ranking structure of feature space from both local and global views. In particular, to effectively build the ranking structure, we propose to learn the rank correlation space by exploiting the local spatial information from Fully Convolutional Network (FCN) and the global semantic information from the Convolutional Neural Network (CNN) simultaneously. More specifically, an effective spatial attention model is designed to capture the local spatial information by selectively learning well-specified locations closely related to target objects. In such hashing framework,the local spatial and global semantic nature of images are captured in an end-to-end ranking-to-hashing manner. Experimental results conducted on three widely-used datasets demonstrate that the proposed DOH method significantly outperforms the state-of-the-art hashing methods.
翻译:近些年来,由于在图像检索中计算和存储的高效度较高,大量散列吸引了越来越多的研究关注。最近的工作表明,同时地貌表现和散列功能与深神经网络的深度神经网络学习具有优势。然而,大多数现有的深重散列方法直接通过将全球语义信息编码来学习散列功能,而忽略了图像的当地空间信息。当地空间结构的丧失使得散列功能的性能瓶颈,从而限制了其用于准确相似检索的应用。在这项工作中,我们提出了一个新的深奥迪纳尔散列(DOH)方法,通过利用本地和全球观点对地貌空间的排位结构进行学习,来学习地貌表示。特别是,为了有效地建立排位结构,我们建议通过利用全面进化网络(FCN)提供的地方空间信息以及同时从革命神经网络(CNN)获得的全球语义信息,来学习散列功能,从而限制其应用精确相似性检索。更具体地说,我们设计一个有效的空间注意模式,通过选择性地学习与目标对象密切相关的地点,从而学习方位表示的方位表示方式。在这种仓列结构结构结构中,以显著的列表方式展示了全球级数据。