Object detection in remote sensing, especially in aerial images, remains a challenging problem due to low image resolution, complex backgrounds, and variation of scale and angles of objects in images. In current implementations, multi-scale based and angle-based networks have been proposed and generate promising results with aerial image detection. In this paper, we propose a novel loss function, called Salience Biased Loss (SBL), for deep neural networks, which uses salience information of the input image to achieve improved performance for object detection. Our novel loss function treats training examples differently based on input complexity in order to avoid the over-contribution of easy cases in the training process. In our experiments, RetinaNet was trained with SBL to generate an one-stage detector, SBL-RetinaNet. SBL-RetinaNet is applied to the largest existing public aerial image dataset, DOTA. Experimental results show our proposed loss function with the RetinaNet architecture outperformed other state-of-art object detection models by at least 4.31 mAP, and RetinaNet by 2.26 mAP with the same inference speed of RetinaNet.
翻译:由于图像分辨率低,背景复杂,图像中物体的规模和角度各异,遥感特别是航空图像中的物体探测仍是一个具有挑战性的问题。在目前的实施过程中,提出了多尺度和角基网络的建议,并在空中图像探测方面产生有希望的结果。在本文中,我们提议为深神经网络设立一个新的损失函数,称为Salience Biased Loss(SBL),称为Salience Biased Loss(SBL),用于使用输入图像的突出信息来改进物体探测的性能。我们的新损失函数根据输入复杂性不同地对待培训实例,以避免在培训过程中出现过份容易的案件。在我们的实验中,Retinnet与SBL(SBL-RetinaNet)培训SBL(SBL-RetinaNet)。SBL-Retinnet(SBL-RetinaNet)被应用到最大的现有公共航空图像数据集DATA(DATA)。实验结果显示我们拟议的损失功能与RetinaNet(RetinaNet)结构相比,至少用4.31 mAP(RetinnetnetnetNet)超过其他状态的物体探测模型,用2.26 mAP(RevennetNet)和RevisionNet(RetinnetnetNet)(以Retinanet)的参考速度为2.26 mAP)。