We introduce a novel method for clustering using a semidefinite programming (SDP) relaxation of the Max k-Cut problem. The approach is based on a new methodology for rounding the solution of an SDP relaxation using iterated linear optimization. We show the vertices of the Max k-Cut relaxation correspond to partitions of the data into at most k sets. We also show the vertices are attractive fixed points of iterated linear optimization. Each step of this iterative process solves a relaxation of the closest vertex problem and leads to a new clustering problem where the underlying clusters are more clearly defined. Our experiments show that using fixed point iteration for rounding the Max k-Cut SDP relaxation leads to significantly better results when compared to randomized rounding.
翻译:我们引入了一种新型的分组方法, 使用半无限期程序( SDP) 来缓解 Max k- Cut 问题。 这种方法基于一种新方法, 使用迭代线性优化来四舍五入 SDP 放松的解决方案。 我们展示了 Max k- Cut 放松的顶点与大多数 k 数据集的数据分隔相对应。 我们还显示 顶点是循环线性优化的有吸引力的固定点。 这个迭代过程的每个步骤都解决了最接近的顶点问题的放松, 并导致一个新的分组问题, 其基础组群在其中定义更为明确。 我们的实验显示, 与随机四舍五入的四舍五入相比, 使用固定点的切换使 Max k- Cut SDP 放松的结果显著改善 。