项目名称: 一种基于偏微分方程面片的三维几何模型参数表示方案
项目编号: No.61202291
项目类型: 青年科学基金项目
立项/批准年度: 2013
项目学科: 计算机科学学科
项目作者: 盛蕴
作者单位: 华东师范大学
项目金额: 24万元
中文摘要: 随着人们对三维几何模型的精度、细节以及逼真性要求的提高, 几何模型的数据量也随之增加, 造成在模型表示、存储和传输上的不便。本课题以三维几何模型的参数表示为研究对象, 旨在利用参数偏微分方程面片对给定的高分辨率几何模型进行有效逼近。通过解析法求解偏微分方程, 用所得到的频谱解(spectral solution)的少量低频系数来表示和重建三维几何模型,从而为几何模型的快速、高效的数据处理创造条件。此外, 通过对参数偏微分方程面片算法的研究, 将解决传统参数偏微分方程算法不易表示三维几何不规整细节的瓶颈。该课题的具体研究内容将包括: 基于曲面几何特征的网格分割以及边界提取, 几何模型的参数表示以及对偏微分方程面片拼接问题的研究。由于所提出的研究方案能用较少的系数来表示三维几何模型, 因此该方案也将被用于对三维网格压缩的研究; 其频谱特性使其也能被用于三维网格滤波和三维数字水印处理。
中文关键词: 参数偏微分方程;几何逼近;渐进式压缩;网格滤波;医学可视化
英文摘要: With people's expectations on precision, detail and fidelity of 3D geometric models growing, the data size of the models employed in computer graphics has been increasing, resulting in inconveniences for model representation, storage and transmission. Aimed at parametric representation of 3D geometric models, this project proposes to approximate a given high-resolution geometric model using parametric Partial Differential Equation (PDE) patches. This patchwise method relies on an analytic solution to solve the PDEs, in which only the coefficients corresponding to the low frequency components of geometry are used to reconstruct the original 3D geometric model, facilitating fast and efficient data handling. Moreover, the patchwise PDE method will overcome the hardship of the conventional parametric PDE methods in representation of irregular geometric details of the 3D shapes. Research work in this project will involve geometry-based mesh partitioning and boundary extraction, parametric representation of geometric models and merging of PDE patches. Since the patchwise PDE method can use just a few coefficients to represent a 3D geometric model, this method can be utilised in 3D mesh compression; its spectral nature allows it to be used in 3D mesh filtering and 3D digital watermarking.
英文关键词: Parametric patial differential equation;geometry approximation;progressive compression;mesh filtering;medical visualization