We aim to solve the incompressible Navier-Stokes equations within the complex microstructure of a porous material. Discretizing the equations on a fine grid using a staggered (e.g., marker-and-cell, mixed FEM) scheme results in a nonlinear residual. Adopting the Newton method, a linear system must be solved at each iteration, which is large, ill-conditioned, and has a saddle-point structure. This demands an iterative (e.g., Krylov) solver, that requires preconditioning to ensure rapid convergence. We propose two monolithic \textit{algebraic} preconditioners, $a\mathrm{PLMM_{NS}}$ and $a\mathrm{PNM_{NS}}$, that are generalizations of previously proposed forms by the authors for the Stokes equations ($a\mathrm{PLMM_{S}}$ and $a\mathrm{PNM_{S}}$). The former is based on the pore-level multiscale method (PLMM) and the latter on the pore network model (PNM), both successful approximate solvers. We also formulate faster-converging geometric preconditioners $g\mathrm{PLMM}$ and $g\mathrm{PNM}$, which impose $\partial_n\boldsymbol{u}\!=\!0$ (zero normal-gradient of velocity) exactly at subdomain interfaces. Finally, we propose an accurate coarse-scale solver for the steady-state Navier-Stokes equations based on $g\mathrm{PLMM}$, capable of computing approximate solutions orders of magnitude faster. We benchmark our preconditioners against state-of-the-art block preconditioners and show $g\mathrm{PLMM}$ is the best-performing one, followed closely by $a\mathrm{PLMM_{S}}$ for steady-state flow and $a\mathrm{PLMM_{NS}}$ for transient flow. All preconditioners can be built and applied on parallel machines.
翻译:本文旨在求解多孔材料复杂微结构内的不可压缩Navier-Stokes方程组。采用交错网格(如标记网格法、混合有限元法)在精细网格上离散方程组会得到非线性残差。采用牛顿法时,每次迭代都需要求解一个具有鞍点结构的大型病态线性系统。这要求使用迭代(如Krylov子空间)求解器,并需要预处理技术以保证快速收敛。我们提出了两种整体代数预处理子$a\mathrm{PLMM_{NS}}$和$a\mathrm{PNM_{NS}}$,它们是作者先前针对Stokes方程组提出的形式($a\mathrm{PLMM_{S}}$和$a\mathrm{PNM_{S}}$)的推广。前者基于孔隙级多尺度方法(PLMM),后者基于孔隙网络模型(PNM),二者均为成功的近似求解器。我们还构建了收敛更快的几何预处理子$g\mathrm{PLMM}$和$g\mathrm{PNM}$,它们在子域界面精确施加$\partial_n\boldsymbol{u}\!=\!0$(速度法向梯度为零)条件。最后,我们基于$g\mathrm{PLMM}$提出了适用于稳态Navier-Stokes方程组的精确粗尺度求解器,能够以数量级更快的速度计算近似解。我们将所提预处理子与先进的块预处理子进行基准测试,结果表明$g\mathrm{PLMM}$性能最优,稳态流动中$a\mathrm{PLMM_{S}}$紧随其后,瞬态流动中$a\mathrm{PLMM_{NS}}$次之。所有预处理子均可在并行计算机上构建和应用。