The main result of this paper is the discretization of Hamiltonian systems of the form $\ddot x = -K \nabla W(x)$, where $K$ is a constant symmetric matrix and $W\colon\mathbb{R}^n\to \mathbb{R}$ is a polynomial of degree $d\le 4$ in any number of variables $n$. The discretization uses the method of polarization and preserves both the energy and the invariant measure of the differential equation, as well as the dimension of the phase space. This generalises earlier work for discretizations of first order systems with $d=3$, and of second order systems with $d=4$ and $n=1$.
翻译:本文的主要结果是汉密尔顿系统以$\ddot x = -K\nabla W(x)$的形式分解,其中K$是一个恒定的对称矩阵,W\croom\mathbb{R<unk> n\to\mathbb{R}美元是任一变量的4美元多等量。离散使用两极分法,保存了差异方程的能量和不变度量度,以及阶段空间的维度。这概括了以美元=3美元计算的一等系统离散和以美元=4美元和1美元计算的二等系统早期工作。</s>