Existing generative models for 3D shapes are typically trained on a large 3D dataset, often of a specific object category. In this paper, we investigate the deep generative model that learns from only a single reference 3D shape. Specifically, we present a multi-scale GAN-based model designed to capture the input shape's geometric features across a range of spatial scales. To avoid large memory and computational cost induced by operating on the 3D volume, we build our generator atop the tri-plane hybrid representation, which requires only 2D convolutions. We train our generative model on a voxel pyramid of the reference shape, without the need of any external supervision or manual annotation. Once trained, our model can generate diverse and high-quality 3D shapes possibly of different sizes and aspect ratios. The resulting shapes present variations across different scales, and at the same time retain the global structure of the reference shape. Through extensive evaluation, both qualitative and quantitative, we demonstrate that our model can generate 3D shapes of various types.
翻译:3D 形状的现有基因变异模型通常是在大型 3D 数据集上培训的, 通常是特定对象类别的。 在本文中, 我们调查只从一个 3D 形状中学习的深层次基因变异模型。 具体地说, 我们展示了一个多尺度的 GAN 模型, 用于在一系列空间尺度中捕捉输入形状的几何特征。 为了避免在 3D 体积上操作引发巨大的内存和计算成本, 我们在三平面混合表示器上建造我们的发电机, 这只需要 2D 组合。 我们在参考形状的 voxel 金字塔上培训我们的基因变异模型, 不需要任何外部监督或人工注解。 我们的模型一旦经过培训, 就可以产生不同大小和侧面比率的多样化和高质量的3D 形状。 由此产生的形状将在不同尺度上产生变化, 同时保留参考形状的全球结构。 通过广泛的评估, 质量和数量上, 我们证明我们的模型可以产生各种类型的3D 形状 。