3D human reconstruction from RGB images achieves decent results in good weather conditions but degrades dramatically in rough weather. Complementary, mmWave radars have been employed to reconstruct 3D human joints and meshes in rough weather. However, combining RGB and mmWave signals for robust all-weather 3D human reconstruction is still an open challenge, given the sparse nature of mmWave and the vulnerability of RGB images. In this paper, we present ImmFusion, the first mmWave-RGB fusion solution to reconstruct 3D human bodies in all weather conditions robustly. Specifically, our ImmFusion consists of image and point backbones for token feature extraction and a Transformer module for token fusion. The image and point backbones refine global and local features from original data, and the Fusion Transformer Module aims for effective information fusion of two modalities by dynamically selecting informative tokens. Extensive experiments on a large-scale dataset, mmBody, captured in various environments demonstrate that ImmFusion can efficiently utilize the information of two modalities to achieve a robust 3D human body reconstruction in all weather conditions. In addition, our method's accuracy is significantly superior to that of state-of-the-art Transformer-based LiDAR-camera fusion methods.
翻译:从 RGB 图像进行的3D 人类重建在良好天气条件下取得了体面的成果,但在恶劣天气中却急剧退化。 补充型的 毫米 Wave 雷达已经用于在恶劣天气中重建3D人的接合和模贝。 然而,考虑到毫米Wave 的稀少性质和 RGB 图像的脆弱性,将全天候3D 人类重建的RGB 和 mm Wave 信号结合起来仍是一个公开的挑战。 在本文中,我们介绍了ImmFusion, 第一个毫米Wave- RGB 聚合解决方案, 在所有天气条件下重建 3D 人体。 具体地说, 我们的 ImmFusion 包括象征性特征提取的图像和点骨和点骨以及一个象征性聚合的变异模块。 图像和点骨根据原始数据完善了全球和地方特征,而Fusion 变异器模块的目标是通过动态选择信息符号,将两种模式有效信息融为一体。 在各种环境中采集的大型数据集( mmBoody) 的广泛实验表明, ImmFusion 能够有效地利用两种模式的信息实现3D 3D 的人体重建。 此外, 我们的变压方法的精确到所有天气条件。