In this work, we address the challenging task of few-shot segmentation. Previous few-shot segmentation methods mainly employ the information of support images as guidance for query image segmentation. Although some works propose to build cross-reference between support and query images, their extraction of query information still depends on the support images. We here propose to extract the information from the query itself independently to benefit the few-shot segmentation task. To this end, we first propose a prior extractor to learn the query information from the unlabeled images with our proposed global-local contrastive learning. Then, we extract a set of predetermined priors via this prior extractor. With the obtained priors, we generate the prior region maps for query images, which locate the objects, as guidance to perform cross interaction with support features. In such a way, the extraction of query information is detached from the support branch, overcoming the limitation by support, and could obtain more informative query clues to achieve better interaction. Without bells and whistles, the proposed approach achieves new state-of-the-art performance for the few-shot segmentation task on PASCAL-5$^{i}$ and COCO datasets.
翻译:在这项工作中,我们处理少截面的富有挑战性的任务。 以前的少截面方法主要使用支持图像的信息作为查询图像分割的指导。 虽然有些作品提议在支持和查询图像之间建立交叉参照, 但其查询信息的提取仍然取决于支持图像。 我们在此提议独立地从查询中提取信息, 以利微截面分割任务。 为此, 我们首先提议先用我们提议的全球- 本地对比学习来从无标签图像中学习查询信息。 然后, 我们通过先前的提取器提取一组预定的前缀。 我们利用获得的先导, 生成先前的查询图像区域图, 以定位对象, 作为与支持特性进行交叉互动的指导 。 这样, 查询信息的提取会脱离支持分支, 克服支持的局限性, 并可以获得更多信息查询线索, 以更好地互动。 没有钟声和哨子, 提议的方法将实现PASAL-5$ $ } 和 COSet 数据 的微截面分割任务的新状态。