As a basic research problem for building effective recommender systems, post-click conversion rate (CVR) estimation has long been plagued by sample selection bias and data sparsity issues. To address the data sparsity issue, prevalent methods based on entire space multi-task model leverage the sequential pattern of user actions, i.e. exposure $\rightarrow$ click $\rightarrow$ conversion to construct auxiliary learning tasks. However, they still fall short of guaranteeing the unbiasedness of CVR estimates. This paper theoretically demonstrates two defects of these entire space multi-task models: (1) inherent estimation bias (IEB) for CVR estimation, where the CVR estimate is inherently higher than the ground truth; (2) potential independence priority (PIP) for CTCVR estimation, where the causality from click to conversion might be overlooked. This paper further proposes a principled method named entire space counterfactual multi-task model (ESCM$^2$), which employs a counterfactual risk minimizer to handle both IEB and PIP issues at once. To demonstrate the effectiveness of the proposed method, this paper explores its parameter tuning in practice, derives its analytic properties, and showcases its effectiveness in industrial CVR estimation, where ESCM$^2$ can effectively alleviate the intrinsic IEB and PIP issues and outperform baseline models.


翻译:作为建立有效建议系统的基本研究问题,点击后转换率(CVR)估算长期以来一直受到抽样选择偏差和数据宽度问题的困扰。为解决数据宽度问题,基于整个空间多任务模型的普遍方法利用了用户行动的顺序模式,即接触$\rightrowle$点击$\rightrowl$@rightrowlear$ 转换为构建辅助学习任务。然而,它们仍然不能保证CVR估算的公正性。本文理论上显示了整个空间多任务模型的两个缺陷:(1) CVR估算的内在估计偏差(IEB),CVR估算必然高于地面真相;(2) CCTVR估算的潜在独立优先事项(PIP),从点击到转换的因果关系可能被忽视。本文还进一步提出了名为整个空间反现实多任务模型(ESCM$%2$)的原则方法,该方法使用反现实风险最小化器处理IEB和PIP问题。为了展示拟议方法的有效性,本文件探讨了CVR值的参数在降低ISR2 和IR 基线问题上的内在有效性。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年11月28日
Arxiv
21+阅读 · 2020年10月11日
Arxiv
16+阅读 · 2020年5月20日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员