A key component of a quantum machine learning model operating on classical inputs is the design of an embedding circuit mapping inputs to a quantum state. This paper studies a transfer learning setting in which classical-to-quantum embedding is carried out by an arbitrary parametric quantum circuit that is pre-trained based on data from a source task. At run time, a binary quantum classifier of the embedding is optimized based on data from the target task of interest. The average excess risk, i.e., the optimality gap, of the resulting classifier depends on how (dis)similar the source and target tasks are. We introduce a new measure of (dis)similarity between the binary quantum classification tasks via the trace distances. An upper bound on the optimality gap is derived in terms of the proposed task (dis)similarity measure, two R$\'e$nyi mutual information terms between classical input and quantum embedding under source and target tasks, as well as a measure of complexity of the combined space of quantum embeddings and classifiers under the source task. The theoretical results are validated on a simple binary classification example.
翻译:利用古典投入运行的量子机器学习模型的一个关键组成部分是设计一个嵌入电路绘图输入到量子状态。本文研究一个传输学习环境,在这个环境中,传统到量子的嵌入由根据来源任务的数据事先培训的任意参数量子电路进行。运行时,嵌入的二元量分级根据目标任务的数据优化。由此产生的分类器的平均超额风险,即最佳性差取决于来源和目标任务如何(不同)相似。我们引入了一种通过痕量距离对二元量分级任务进行(不同)差异的新的衡量标准。关于最佳性差距的上限是从拟议任务(差异)相似度测量得出的,两个R$\'e$nyi信息术语在源和目标任务下的典型投入和量子嵌入中,以及源任务下量子嵌入和分类器组合空间的复杂度测量。理论结果在简单二元分类中得到验证。