The effective application of contrastive learning technology in natural language processing tasks shows the superiority of contrastive learning in text analysis tasks. How to construct positive and negative samples correctly and reasonably is the core challenge of contrastive learning. Since it is difficult to construct contrastive objects in multi-label multi-classification tasks, there are few contrastive losses for multi-label multi-classification text classification. In this paper, we propose five contrastive losses for multi-label multi-classification tasks. They are Strict Contrastive Loss (SCL), Intra-label Contrastive Loss (ICL), Jaccard Similarity Contrastive Loss (JSCL), and Jaccard Similarity Probability Contrastive Loss (JSPCL) and Stepwise Label Contrastive Loss (SLCL). We explore the effectiveness of contrastive learning for multi-label multi-classification tasks under different strategies, and provide a set of baseline methods for contrastive learning techniques on multi-label classification tasks. We also perform an interpretability analysis of our approach to show how different contrastive learning methods play their roles. The experimental results in this paper demonstrate that our proposed contrastive losses can bring some improvement for multi-label multi-classification tasks. Our work reveal how to "appropriately" change the contrastive way of contrastive learning is the key idea to improve the adaptability of contrastive learning in multi-label multi-classification tasks.


翻译:在自然语言处理任务中有效应用对比式学习技术显示了在文本分析任务中对比性学习的优势。如何正确和合理地构建正反抽样是对比性学习的核心挑战。由于在多标签多分类任务中难以构建对比性对象,多标签多分类文本分类分类的对比性学习损失很少。在本文件中,我们建议多标签多分类多分类任务中存在五种对比性损失。它们是严格的对比性损失(SCL)、标签内对比性损失(ICL)、相近性相似性对比性损失(JSCL)以及相近性相似性对比性损失(JSPCL)和相近性对比性损失(SLCL)。我们探讨了不同战略下多标签多分类任务对比性学习的对比性学习效果的有效性,并为多标签分类任务的对比性学习技术提供了一套基准方法。我们还对方法进行了解释性分析,以显示差异性学习方法如何发挥作用。本文的实验结果表明,我们提议的对比性相似性差异性对比性对比性差异性对比性对比性对比性对比性损失和渐进性多等级学习任务如何改进多标签式学习的多等级任务。我们学习的关键性学习任务,改进了多标签式学习的对比性工作。

0
下载
关闭预览

相关内容

零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
175+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
A Survey on Data Augmentation for Text Classification
Arxiv
12+阅读 · 2019年3月14日
Arxiv
31+阅读 · 2018年11月13日
Arxiv
11+阅读 · 2018年1月18日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员