An extra-stabilised Morley finite element method (FEM) directly computes guaranteed lower eigenvalue bounds with optimal a priori convergence rates for the bi-Laplace Dirichlet eigenvalues. The smallness assumption $\min\{\lambda_h,\lambda\}h_{\max}^{4}$ $\le 15.0864$ on the maximal mesh-size $h_{\max}$ makes the computed $k$-th discrete eigenvalue $\lambda_h\le \lambda$ a lower eigenvalue bound for the $k$-th Dirichlet eigenvalue $\lambda$. This holds for multiple and clusters of eigenvalues and serves for the localisation of the bi-Laplacian Dirichlet eigenvalues in particular for coarse meshes. The analysis requires interpolation error estimates for the Morley FEM with explicit constants in any space dimension $n\ge 2$, which are of independent interest. The convergence analysis in $3$D follows the Babu\v{s}ka-Osborn theory and relies on a companion operator for the Morley finite element method. This is based on the Worsey-Farin 3D version of the Hsieh-Clough-Tocher macro element with a careful selection of center points in a further decomposition of each tetrahedron into 12 sub-tetrahedra. Numerical experiments in 2D support the optimal convergence rates of the extra-stabilised Morley FEM and suggest an adaptive algorithm with optimal empirical convergence rates.


翻译:额外稳定的 Morley 限制元素法 (FEM) 直接计算保证低电子值值的保证值, 并且对双拉普尔的 Dirichlet egenle egenvalue 进行最优的先验趋同率。 小数假设$\min ⁇ lambda_h,\lambda ⁇ h ⁇ max ⁇ 4}$\le 15.0864$ 在最大网格大小 $h ⁇ max} 上, 计算出美元- 完全离散的 egen值 $\lambda_h\le lambda$ laimenda 。 这个小数假设假设是用于多组和组的 eigenvald_ lambda_h, 特别是用于粗略的 meshes。 分析要求计算出 Morley FEMM 和任何空间层面的明确常数支持 $nge 2$nge, 这是独立的兴趣。 3$D 的精度趋同Fornial- horligal 递LO 的精度中位值递LOlalal- IMIard IMelevlational- sallation IMlevlevlation rolation rolation rolation 将Flation- slevlation- slationallevlevlevlevlevlevlevlation rolation rolation 的精度对F- slation rolation rolation rolation rolation rolation rolation rolation rolation 的精度 的精度的精度的精度的精度的精度的精度值进行分析, 和FAxxxxxxxxxxxxxx。

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
TCN v2 + 3Dconv 运动信息
CreateAMind
4+阅读 · 2019年1月8日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【ICML2018】63篇强化学习论文全解读
专知
7+阅读 · 2018年7月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
VIP会员
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
TCN v2 + 3Dconv 运动信息
CreateAMind
4+阅读 · 2019年1月8日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【ICML2018】63篇强化学习论文全解读
专知
7+阅读 · 2018年7月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员