This paper introduces a new family of mixed finite elements for solving a mixed formulation of the biharmonic equations in two and three dimensions. The symmetric stress $\bm{\sigma}=-\nabla^{2}u$ is sought in the Sobolev space $H({\rm{div}}\bm{div},\Omega;\mathbb{S})$ simultaneously with the displacement $u$ in $L^{2}(\Omega)$. Stemming from the structure of $H(\bm{div},\Omega;\mathbb{S})$ conforming elements for the linear elasticity problems proposed by J. Hu and S. Zhang, the $H({\rm{div}}\bm{div},\Omega;\mathbb{S})$ conforming finite element spaces are constructed by imposing the normal continuity of $\bm{div}\bm{\sigma}$ on the $H(\bm{div},\Omega;\mathbb{S})$ conforming spaces of $P_{k}$ symmetric tensors. The inheritance makes the basis functions easy to compute. The discrete spaces for $u$ are composed of the piecewise $P_{k-2}$ polynomials without requiring any continuity. Such mixed finite elements are inf-sup stable on both triangular and tetrahedral grids for $k\geq 3$, and the optimal order of convergence is achieved. Besides, the superconvergence and the postprocessing results are displayed. Some numerical experiments are provided to demonstrate the theoretical analysis.
翻译:本文在两个和三个维度的双调方程式混合配方中引入了一组新的混合限定元素。 在 Sobolev 空间 $H ({rm{div}{bm{div{div}},\ Omega;\mathb{S}) 美元的同时, 用于解决两个和三个维度的混合配方。 在 $H (\ bm{div},\ omega;\ mathb{S} 结构中, 调制的双调调调制公式。 在 $( b\\ bm{ div} 中,\ mathbl) 和 $( m) codal 等值结构中, 匹配的调制成元素在 $( b\\\ diver} \\\ math) 上, 符合线性弹性调制的调制元素在 J. Hu and\\\\\\\ ma\ ma\ mas mas mas rodeal rodealal max smax roup roup 。 在 3\ smax roq max smax smax smax smax s s smax smax smax smax 。 max max smax s s s s s smax max max s s s s s s s smax max max max max 。 max max max max 。 。 max max max max max max max max max max 。 max max max max max max max max max max max max 。 。 max max max max max max max max max 。 。 mas mas mas mas mas mas mas max max max max max max max max