One of the significant steps in the process leading to the identification of proteins is mass spectrometry, which allows for obtaining information about the structure of proteins. Removing isotope peaks from the mass spectrum is vital and it is done in a process called deisotoping. There are different algorithms for deisotoping, but they have their limitations, they are dedicated to different methods of mass spectrometry. Data from experiments performed with the MALDI-ToF technique are characterized by high dimensionality. This paper presents a method for identifying isotope envelopes in MALDI-ToF molecular imaging data based on the Mamdani-Assilan fuzzy system and spatial maps of the molecular distribution of peaks included in the isotopic envelope. Several image texture measures were used to evaluate spatial molecular distribution maps. The algorithm was tested on eight datasets obtained from the MALDI-ToF experiment on samples from the National Institute of Oncology in Gliwice from patients with cancer of the head and neck region. The data were subjected to pre-processing and feature extraction. The results were collected and compared with three existing deisotoping algorithms. The analysis of the obtained results showed that the method for identifying isotopic envelopes proposed in this paper enables the detection of overlapping envelopes by using the approach oriented to study peak pairs. Moreover, the proposed algorithm enables the analysis of large data sets.


翻译:在确定蛋白质的过程中,一个重要步骤是质量光谱测量,以便获得关于蛋白质结构的信息。从质量频谱中去除同位素峰值至关重要,而且是在一种称为脱索方位的过程中完成的。有各种不同的脱索方程算法,但它们有其局限性,专门使用不同的质量光谱测量方法。通过MALDI-TOF技术的实验获得的数据具有高维度特征。本文介绍了一种方法,用以根据Mamdani-Assilan fuzzy系统以及同位素分布空间分布的分子分布图,在MALDI-TOF分子成像数据中识别同位素封套。根据Mamdani-Assilan fuzzy系统以及包含在等离子封封中的分子分布空间分布图绘制了同位素封顶峰。使用了几种图像纹度测量方法来评价空间分子分布图。该算法是用从MALDI-TOF实验获得的8个数据集测试的。从Gliwice国家肿瘤研究所从头部和颈部癌症患者取的样本采集的数据。这些数据是经过预处理和特征提取的。数据提取的。与特征提取的结果与现有脱索方位方位分析模型分析结果比较,通过现有的脱剖式分析模型分析结果显示分析结果显示了这一分析结果。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
39+阅读 · 2020年9月6日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
全球首个GNN为主的AI创业公司,募资$18.5 million!
图与推荐
1+阅读 · 2022年4月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
23+阅读 · 2022年2月24日
Arxiv
30+阅读 · 2021年7月7日
Learning in the Frequency Domain
Arxiv
11+阅读 · 2020年3月12日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
全球首个GNN为主的AI创业公司,募资$18.5 million!
图与推荐
1+阅读 · 2022年4月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员