This paper studies the change point detection problem in time series of networks, with the Separable Temporal Exponential-family Random Graph Model (STERGM). We consider a sequence of networks generated from a piecewise constant distribution that is altered at unknown change points in time. Detection of the change points can identify the discrepancies in the underlying data generating processes and facilitate downstream dynamic network analysis tasks. Moreover, the STERGM that focuses on network statistics is a flexible model to fit dynamic networks with both dyadic and temporal dependence. We propose a new estimator derived from the Alternating Direction Method of Multipliers (ADMM) and the Group Fused Lasso to simultaneously detect multiple time points, where the parameters of STERGM have changed. We also provide Bayesian information criterion for model selection to assist the detection. Our experiments show good performance of the proposed method on both simulated and real data. Lastly, we develop an R package CPDstergm to implement our method.
翻译:本文研究了分离Tempora级指数族随机图模型(STERGM)在时间序列网络中的变点检测问题。我们考虑从分段常数分布生成的网络序列,在未知时间点被更改。变点检测可以识别底层数据生成进程中的差异,并促进下游动态网络分析任务。此外,专注于网络统计量的STERGM是一种灵活的模型,可适用于具有dyadic和时间依赖性的动态网络。我们提出了一种新的估计器,它源于交替方向乘子法(ADMM)和组融合Lasso,以同时检测多个时间点,STERGM的参数已更改。我们还提供了模型选择的贝叶斯信息准则,以协助检测。实验结果表明,所提出的方法在模拟和实际数据上表现良好。最后,我们开发了一个R包CPDstergm来实现我们的方法。