The prominence of embodied Artificial Intelligence (AI), which empowers robots to navigate, perceive, and engage within virtual environments, has attracted significant attention, owing to the remarkable advances in computer vision and large language models. Privacy emerges as a pivotal concern within the realm of embodied AI, as the robot accesses substantial personal information. However, the issue of privacy leakage in embodied AI tasks, particularly concerning reinforcement learning algorithms, has not received adequate consideration in research. This paper aims to address this gap by proposing an attack on the training process of the value-based algorithm and the gradient-based algorithm, utilizing gradient inversion to reconstruct states, actions, and supervisory signals. The choice of using gradients for the attack is motivated by the fact that commonly employed federated learning techniques solely utilize gradients computed based on private user data to optimize models, without storing or transmitting the data to public servers. Nevertheless, these gradients contain sufficient information to potentially expose private data. To validate our approach, we conducted experiments on the AI2THOR simulator and evaluated our algorithm on active perception, a prevalent task in embodied AI. The experimental results demonstrate the effectiveness of our method in successfully reconstructing all information from the data in 120 room layouts. Check our website for videos.
翻译:暂无翻译