The Genotype-Tissue Expression (GTEx) project collects samples from multiple human tissues to study the relationship between genetic variation or single nucleotide polymorphisms (SNPs) and gene expression in each tissue. However, most existing eQTL analyses only focus on single tissue information. In this paper, we develop a multi-tissue eQTL analysis that improves the single tissue cis-SNP gene expression association analysis by borrowing information across tissues. Specifically, we propose an empirical Bayes regression model for SNP-expression association analysis using data across multiple tissues. To allow the effects of SNPs to vary greatly among tissues, we use a mixture distribution as the prior, which is a mixture of a multivariate Gaussian distribution and a Dirac mass at zero. The model allows us to assess the cis-SNP gene expression association in each tissue by calculating the Bayes factors. We show that the proposed estimator of the cis-SNP effects on gene expression achieves the minimum Bayes risk among all estimators. Analyses of the GTEx data show that our proposed method is superior to traditional simple regression methods in terms of predicting accuracy for gene expression levels using cis-SNPs in testing data sets. Moreover, we find that although genetic effects on expression are extensively shared among tissues, effect sizes still vary greatly across tissues.
翻译:Genotype-Tissu Explament (GTEx) 项目从多个人体组织收集样本,研究基因变异或单一核核酸化多元形态(SNPs)和每个组织中的基因表达方式之间的关系。然而,大多数现有的eQTL 分析只侧重于单一组织信息。在本文件中,我们开发了一个多组织 eQTL 分析,通过跨组织借取信息,改进单一组织Cis-SNP基因表达表达方式分析。具体地说,我们提议了一种经验性巴耶斯回归模式,用于利用多种组织的数据进行 SNP 表达式分析。为了使SNPs的效果在各组织中差异很大,我们使用混合分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式分布式,零度为Dirac质量值。这个模型使我们能够通过计算贝雅系数来评估每个组织中的cis-SNP基因表达式组合。我们显示,拟议的Cis-SNP对基因表达式影响的估测算器仍然在所有估计者中达到最低限度的表示式表达式风险。我们利用GTIS recregires recal 分析式结构分析式结构分析式结构的深度结构的深度分析方法,在S的深度分析中,在Sexexexegradududustralalmals remads ex ex ex sex sex ex sex sex ex ex ex exex ex ex ex exexexexexexexexexexexalationalationalationalmentalmentalmentalmentalmentalmentalments ex ex ex ladess ladess ladess