Consider robot swarm wireless networks where mobile robots offload their computing tasks to a computing server located at the mobile edge. Our aim is to maximize the swarm lifetime through efficient exploitation of the correlation between distributed data sources. The optimization problem is handled by selecting appropriate robot subsets to send their sensed data to the server. In this work, the data correlation between distributed robot subsets is modelled as an undirected graph. A least-degree iterative partitioning (LDIP) algorithm is proposed to partition the graph into a set of subgraphs. Each subgraph has at least one vertex (i.e., subset), termed representative vertex (R-Vertex), which shares edges with and only with all other vertices within the subgraph; only R-Vertices are selected for data transmissions. When the number of subgraphs is maximized, the proposed subset selection approach is shown to be optimum in the AWGN channel. For independent fading channels, the max-min principle can be incorporated into the proposed approach to achieve the best performance.
翻译:将移动机器人将其计算任务卸载到移动边缘的计算机服务器的机器人群温无线网络。 我们的目标是通过高效利用分布式数据源之间的相关关系,最大限度地增加群发寿命。 优化问题通过选择适当的机器人子集来解决, 以便将其感测的数据发送到服务器。 在这项工作中, 分布式机器人子集之间的数据相关性模拟为非方向图形。 将最小度迭代分区算法( LDIP) 提议将图形分割成一组子图。 每个子集至少有一个顶点( 即子集), 被称为有代表性的顶点( R- Vertex), 与子图中所有其他的顶点共享, 并且仅与子图中的所有其它的顶点共享; 只有 R- Vertices 被选中用于数据传输。 当子图数最大化时, 拟议的子集选择方法将在 AWGN 频道中显示为最优化。 对于独立的淡化通道, 最高值原则可以纳入拟议的方法中, 以达到最佳性能 。