The objective of this study is to analyze the statistics of the data rate and of the incident power density (IPD) in user-centric cell-free networks (UCCFNs). To this purpose, our analysis proposes a number of performance metrics derived using stochastic geometry (SG). On the one hand, the first moments and the marginal distribution of the IPD are calculated. On the other hand, bounds on the joint distributions of rate and IPD are provided for two scenarios: when it is relevant to obtain IPD values above a given threshold (for energy harvesting purposes), and when these values should instead remain below the threshold (for public health reasons). In addition to deriving these metrics, this work incorporates features related to UCCFNs which are new in SG models: a power allocation based on collective channel statistics, as well as the presence of potential overlaps between adjacent clusters. Our numerical results illustrate the achievable trade-offs between the rate and IPD performance. For the considered system, these results also highlight the existence of an optimal node density maximizing the joint distributions. (This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessible.)


翻译:本研究的目的是分析数据率和无用户中心细胞网络中事件功率密度(IPD)的统计数据。为此,我们的分析提出了使用随机几何(SG)得出的若干性能衡量标准。一方面,首先和IPD的边际分布是计算出来的。另一方面,对两种假设提供了费率和IDD联合分布的界限:当有必要获得超过某一阈值(为节能采集目的)的IPD值时,当这些数值应保持在阈值以下(为公共卫生原因)时。除了得出这些指标外,这项工作还包含一些与UNCCN有关的特征,这些特征在SG模型中是新的:根据集体频道统计分配的电力,以及相邻集群之间可能存在的重叠。我们的数字结果说明了费率与IPD绩效之间可实现的权衡。对于所考虑的系统来说,这些结果还突出表明存在最佳节能密度,使联合分布最大化。 (这项工作已经提交IEEEEE, 可能无需更多版本的版权通知即可转移。

0
下载
关闭预览

相关内容

【硬核书】矩阵代数基础,248页pdf
专知会员服务
86+阅读 · 2021年12月9日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年3月17日
Arxiv
13+阅读 · 2021年5月25日
Arxiv
17+阅读 · 2019年3月28日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员