We present experimental results to explore a form of bivariate glyphs for representing large-magnitude-range vectors. The glyphs meet two conditions: (1) two visual dimensions are separable; and (2) one of the two visual dimensions uses a categorical representation (e.g., a categorical colormap). We evaluate how much these two conditions determine the bivariate glyphs' effectiveness. The first experiment asks participants to perform three local tasks requiring reading no more than two glyphs. The second experiment scales up the search space in global tasks when participants must look at the entire scene of hundreds of vector glyphs to get an answer. Our results support that the first condition is necessary for local tasks when a few items are compared. But it is not enough to understand a large amount of data. The second condition is necessary for perceiving global structures of examining very complex datasets. Participants' comments reveal that the categorical features in the bivariate glyphs trigger emergent optimal viewers' behaviors. This work contributes to perceptually accurate glyph representations for revealing patterns from large scientific results. We release source code, quantum physics data, training documents, participants' answers, and statistical analyses for reproducible science https://osf.io/4xcf5/?view_only=94123139df9c4ac984a1e0df811cd580.
翻译:我们提出实验结果,以探索一种代表大型磁带矢量的双变方格的形态。 glyphs 符合两个条件:(1) 两个视觉维度是相容的;(2) 两个视觉维度中的一个使用绝对的表示方式(例如绝对色图)。我们评估这两个条件在多大程度上决定二变方格的效能。第一个实验要求参与者执行三个地方任务,需要阅读不超过两个晶体。第二个实验将全球任务的搜索空间扩大,参与者必须查看成百上千的矢体的场景才能得到答案。我们的结果支持在比较一些项目时,第一个条件对本地任务是必要的。但不足以理解大量的数据。第二个条件对于感知审查非常复杂的数据集的全球结构是必要的。参与者的评论显示,双变方格的绝对特征触发了新兴的最佳观察者的行为。这项工作有助于为揭示大型科学结果的形态而进行准确的图形表达。我们发布了源代码 / 数据分析。