Conversational search has evolved as a new information retrieval paradigm, marking a shift from traditional search systems towards interactive dialogues with intelligent search agents. This change especially affects exploratory information-seeking contexts, where conversational search systems can guide the discovery of unfamiliar domains. In these scenarios, users find it often difficult to express their information goals due to insufficient background knowledge. Conversational interfaces can provide assistance by eliciting information needs and narrowing down the search space. However, due to the complexity of information-seeking behavior, the design of conversational interfaces for retrieving information remains a great challenge. Although prior work has employed user studies to empirically ground the system design, most existing studies are limited to well-defined search tasks or known domains, thus being less exploratory in nature. Therefore, we conducted a laboratory study to investigate open-ended search behavior for navigation through unknown information landscapes. The study comprised of 26 participants who were restricted in their search to a text chat interface. Based on the collected dialogue transcripts, we applied statistical analyses and process mining techniques to uncover general information-seeking patterns across five different domains. We not only identify core dialogue acts and their interrelations that enable users to discover domain knowledge, but also derive design suggestions for conversational search systems.


翻译:互动搜索已演变为一种新的信息检索模式,标志着从传统的搜索系统向与智能搜索代理机构进行交互式对话的转变。这一变化特别影响到探索性信息搜索环境,在探索性信息搜索环境中,对口搜索系统可以指导不熟悉域的发现。在这些情景中,用户发现由于背景知识不足,往往难以表达信息目标。对口界面可以通过查询信息需求和缩小搜索空间来提供协助。然而,由于信息搜索行为的复杂性,设计检索信息的对口界面仍是一个巨大挑战。尽管先前的工作利用用户研究在经验上为系统设计奠定基础,但大多数现有研究仅限于定义明确的搜索任务或已知域,因此在性质上不那么具有探索性。因此,我们开展了一项实验室研究,以调查通过未知信息景观进行导航的开放式搜索行为。由26名参与者组成的研究,他们搜索时仅限于搜索文本聊天界面。根据收集到的对话记录,我们应用统计分析和进程挖掘技术来发现五个不同领域的一般信息搜索模式。我们不仅确定核心对话行为及其相互关系,而且使用户能够发现域知识的搜索系统。</s>

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
【2023新书】使用Python进行统计和数据可视化,554页pdf
专知会员服务
126+阅读 · 2023年1月29日
专知会员服务
17+阅读 · 2020年9月6日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
26+阅读 · 2018年9月21日
VIP会员
相关VIP内容
【2023新书】使用Python进行统计和数据可视化,554页pdf
专知会员服务
126+阅读 · 2023年1月29日
专知会员服务
17+阅读 · 2020年9月6日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员