This paper explores a new approach to fault-tolerant quantum computing (FTQC), relying on quantum polar codes. We consider quantum polar codes of Calderbank-Shor-Steane type, encoding one logical qubit, which we refer to as $\mathcal{Q}_1$ codes. First, we show that a subfamily of $\mathcal{Q}_1$ codes is equivalent to the well-known family of Shor codes. Moreover, we show that $\mathcal{Q}_1$ codes significantly outperform Shor codes, of the same length and minimum distance. Second, we consider the fault-tolerant preparation of $\mathcal{Q}_1$ code states. We give a recursive procedure to prepare a $\mathcal{Q}_1$ code state, based on two-qubit Pauli measurements only. The procedure is not by itself fault-tolerant, however, the measurement operations therein provide redundant classical bits, which can be advantageously used for error detection. Fault-tolerance is then achieved by combining the proposed recursive procedure with an error detection method. Finally, we consider the fault-tolerant error correction of $\mathcal{Q}_1$ codes. We use Steane error correction, which incorporates the proposed fault-tolerant code state preparation procedure. We provide numerical estimates of the logical error rates for $\mathcal{Q}_1$ and Shor codes of length $16$ and $64$ qubits, assuming a circuit-level depolarizing noise model. Remarkably, the $\mathcal{Q}_1$ code of length $64$ qubits achieves a logical error rate very close to $10^{-6}$ for the physical error rate $p = 10^{-3}$, therefore, demonstrating the potential of the proposed polar codes based approach to FTQC.
翻译:本文探索了一种基于量子countal 量子计算(FTQC)的新方法, 依靠量子代码。 第二, 我们考虑卡尔德银行- 肖尔- 斯蒂恩型的量极代码, 编码一个逻辑的qubit, 我们称之为$\ mathcal=%1$的代码。 首先, 我们显示一个亚式的 $\ mathcal=1$代码相当于著名的Shor 代码组。 此外, 我们显示, $\ mathcal=1$的代码会大大超过一个长度和最小距离的Shorcode 。 第二, 我们考虑 $\ markbal_ cal_ 1 代码的错误准备。 我们给出一个循环程序, 仅根据2Qmitcalcal=1 codecodements。 但是, 其测量操作本身不易错, 但是, 其中的测量操作提供了多余的古典比。 用来检测错误的经典比特点。 因此, 通过将拟议的递解程序与一个错误检测方法相结合。 我们考虑一个错误- $ dalalalal rational ration ration ration ration ration ration ration ration ration ration $= ration ration lax lax.</s>