This paper explores a new approach to fault-tolerant quantum computing (FTQC), relying on quantum polar codes. We consider quantum polar codes of Calderbank-Shor-Steane type, encoding one logical qubit, which we refer to as $\mathcal{Q}_1$ codes. First, we show that a subfamily of $\mathcal{Q}_1$ codes is equivalent to the well-known family of Shor codes. Moreover, we show that $\mathcal{Q}_1$ codes significantly outperform Shor codes, of the same length and minimum distance. Second, we consider the fault-tolerant preparation of $\mathcal{Q}_1$ code states. We give a recursive procedure to prepare a $\mathcal{Q}_1$ code state, based on two-qubit Pauli measurements only. The procedure is not by itself fault-tolerant, however, the measurement operations therein provide redundant classical bits, which can be advantageously used for error detection. Fault-tolerance is then achieved by combining the proposed recursive procedure with an error detection method. Finally, we consider the fault-tolerant error correction of $\mathcal{Q}_1$ codes. We use Steane error correction, which incorporates the proposed fault-tolerant code state preparation procedure. We provide numerical estimates of the logical error rates for $\mathcal{Q}_1$ and Shor codes of length $16$ and $64$ qubits, assuming a circuit-level depolarizing noise model. Remarkably, the $\mathcal{Q}_1$ code of length $64$ qubits achieves a logical error rate very close to $10^{-6}$ for the physical error rate $p = 10^{-3}$, therefore, demonstrating the potential of the proposed polar codes based approach to FTQC.


翻译:本文探索了一种基于量子countal 量子计算(FTQC)的新方法, 依靠量子代码。 第二, 我们考虑卡尔德银行- 肖尔- 斯蒂恩型的量极代码, 编码一个逻辑的qubit, 我们称之为$\ mathcal=%1$的代码。 首先, 我们显示一个亚式的 $\ mathcal=1$代码相当于著名的Shor 代码组。 此外, 我们显示, $\ mathcal=1$的代码会大大超过一个长度和最小距离的Shorcode 。 第二, 我们考虑 $\ markbal_ cal_ 1 代码的错误准备。 我们给出一个循环程序, 仅根据2Qmitcalcal=1 codecodements。 但是, 其测量操作本身不易错, 但是, 其中的测量操作提供了多余的古典比。 用来检测错误的经典比特点。 因此, 通过将拟议的递解程序与一个错误检测方法相结合。 我们考虑一个错误- $ dalalalal rational ration ration ration ration ration ration ration ration ration ration $= ration ration lax lax.</s>

0
下载
关闭预览

相关内容

指分类错误的样本数占样本总数的比例。
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
76+阅读 · 2021年3月16日
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
49+阅读 · 2021年5月9日
Arxiv
14+阅读 · 2020年12月17日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员