Solving sparse linear systems is a critical challenge in many scientific and engineering fields, particularly when these systems are severely ill-conditioned. This work aims to provide a comprehensive comparison of various solvers designed for such problems, offering valuable insights and guidance for domain scientists and researchers. We develop the tools required to accurately evaluate the performance and correctness of 16 solvers from 11 state-of-the-art numerical libraries, focusing on their effectiveness in handling ill-conditioned matrices. The solvers were tested on linear systems arising from a coupled hydro-mechanical marker-in-cell geophysical simulation. To address the challenge of computing accurate error bounds on the solution, we introduce the Projected Adam method, a novel algorithm to efficiently compute the condition number of a matrix without relying on eigenvalues or singular values. Our benchmark results demonstrate that Intel oneAPI MKL PARDISO, UMFPACK, and MUMPS are the most reliable solvers for the tested scenarios. This work serves as a resource for selecting appropriate solvers, understanding the impact of condition numbers, and improving the robustness of numerical solutions in practical applications.
翻译:暂无翻译