Diffusion Schr\"odinger bridges (DSB) have recently emerged as a powerful framework for recovering stochastic dynamics via their marginal observations at different time points. Despite numerous successful applications, existing algorithms for solving DSBs have so far failed to utilize the structure of aligned data, which naturally arises in many biological phenomena. In this paper, we propose a novel algorithmic framework that, for the first time, solves DSBs while respecting the data alignment. Our approach hinges on a combination of two decades-old ideas: The classical Schr\"odinger bridge theory and Doob's $h$-transform. Compared to prior methods, our approach leads to a simpler training procedure with lower variance, which we further augment with principled regularization schemes. This ultimately leads to sizeable improvements across experiments on synthetic and real data, including the tasks of rigid protein docking and temporal evolution of cellular differentiation processes.
翻译:最近,Difuncle Schr\'odinger桥(DSB)成为了通过不同时间点的边际观测恢复随机动态的强大框架。 尽管许多应用都取得了成功,但现有的解决DSB的算法迄今未能利用匹配数据的结构,而这些数据自然会在许多生物现象中产生。在本文中,我们提出了一个新颖的算法框架,首次在尊重数据一致性的同时解决DSB。我们的方法取决于20年的理念:古典Schr\'odinger桥理论和Doob的$h$-transform。与以前的方法相比,我们的方法导致了一种差异较小的更简单的培训程序,我们通过有原则的正规化计划进一步加强了这种程序。这最终导致合成数据与真实数据实验之间的重大改进,包括硬质蛋白对接和细胞分化过程的时间演变。