项目名称: 非线性Schrödinger方程孤立子和怪波的数值方法

项目编号: No.11501242

项目类型: 青年科学基金项目

立项/批准年度: 2016

项目学科: 数理科学和化学

项目作者: 许志国

作者单位: 吉林大学

项目金额: 18万元

中文摘要: 孤立子和怪波理论是非线性光学、流体力学和Bose-Einstein凝聚态(BEC)等非线性科学研究领域中的重要课题,对优化光纤通信质量、降低海洋航行和海上作业风险等社会实际生产生活有着重要的指导作用和应用价值。本项目的主旨是建立求解非线性Schrödinger方程(组)孤立子和怪波的数值方法。一方面,我们将尝试利用多尺度方法从理论上构造spin-1 BEC和spin-2 BEC等方程的孤立子,建立求解spin-1 BEC和spin-2 BEC等方程向量孤立子的数值方法,并结合理论和数值方法,分析孤立子的稳定性以及相互作用。另一方面,我们将从理论上分析怪波的产生机理,给出其存在的条件,并建立求解怪波的有效算法,进而讨论算法的稳定性,有效性以及误差估计。特别地,我们将结合理论和数值方法,分析多组分非线性Schrödinger系统怪波与孤立子间的相互作用,为非线性波的控制设计提供理论依据。

中文关键词: 孤立子;怪波;非线性Schrödinger方程;数值方法

英文摘要: Solitons and rogue waves are important topisc in nonlinear science, such as nonlinear optics, fluid dynamics and Bose-Einstein condensate. They are very useful in optimizing the quality of optical fiber communication, reducing the risk of marine navigation and marine operations. In the project, we will study the numerical methods for computing solitons and rogue waves in the nonlinear Schrödinger equation(s). We will construct the solitons of spin-1 BEC, spin-2 BEC theoretically by multi-scale expansion method, and propose efficient and accurate numerical method to computing vector solitons. The stability and interaction between soltions will be also studied in this project. Meanwhile, we will study the mechanism of rogue waves theoretically, and establish an effective algorithm to simulate rogue waves. Moreover, we will study the interaction between solitons and rogue waves in the multi-components nonlinear Schrödinger systems. We hope this study can give some help for controlling nonlinear waves.

英文关键词: Soliton ;Rogue wave ;Nonlinear Schrödinger equation;Numerical methods

成为VIP会员查看完整内容
0

相关内容

【AAAI 2022】神经分段常时滞微分方程
专知会员服务
34+阅读 · 2022年1月14日
专知会员服务
105+阅读 · 2021年8月23日
专知会员服务
42+阅读 · 2021年4月2日
《常微分方程》笔记,419页pdf
专知会员服务
73+阅读 · 2020年8月2日
【ICLR2020】图神经网络与图像处理,微分方程,27页ppt
专知会员服务
48+阅读 · 2020年6月6日
梯度下降(Gradient Descent)的收敛性分析
PaperWeekly
2+阅读 · 2022年3月10日
【AAAI 2022】神经分段常时滞微分方程
专知
2+阅读 · 2022年1月14日
【ICML2021】低秩Sinkhorn 分解
专知
9+阅读 · 2021年8月20日
神经网络常微分方程 (Neural ODEs) 解析
AI科技评论
41+阅读 · 2019年8月9日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月19日
Deformable Style Transfer
Arxiv
14+阅读 · 2020年3月24日
小贴士
相关主题
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
微信扫码咨询专知VIP会员