The retriever-reader framework is popular for open-domain question answering (ODQA), where a retriever samples for the reader a set of relevant candidate passages from a large corpus. A key assumption behind this method is that high relevance scores from the retriever likely indicate high answerability from the reader, which implies a high probability that the retrieved passages contain answers to a given question. In this work, we empirically dispel this belief and observe that recent dense retrieval models based on DPR often rank unanswerable counterfactual passages higher than their answerable original passages. To address such answer-unawareness in dense retrievers, we seek to use counterfactual samples as additional training resources to better synchronize the relevance measurement of DPR with the answerability of question-passage pairs. Specifically, we present counterfactually-Pivoting Contrastive Learning (PiCL), a novel representation learning approach for passage retrieval that leverages counterfactual samples as pivots between positive and negative samples in their learned embedding space. We incorporate PiCL into the retriever training to show the effectiveness of PiCL on ODQA benchmarks and the robustness of the learned models.
翻译:检索器-阅读器框架是开放领域问答(ODQA)中普遍使用的方法,其中检索器从大型语料库中为阅读器抽样一组相关的候选段落。支持此方法的一个关键假设是,来自检索器的高相关性分数很可能表明来自阅读器的高可回答性,这意味着从检索的段落中很有可能包含给定问题的答案。在这项工作中,我们经验性地打破了这种信念,并观察到基于DPR的最近密集检索模型通常将无法回答的虚拟事实段落排名高于其可回答的原始段落。为了解决密集检索器中的这种无法回答问题的情况,我们寻求使用虚拟事实样本作为附加的训练资源,以更好地将DPR的相关性测量与问题-段落对的可回答性同步。具体而言,我们提出了配有反事实对比学习的反事实中介枢纽(PiCL),这是一种基于嵌入空间的段落检索的新型表示学习方法,其利用虚拟事实样本作为正负样本之间的枢纽。我们将PiCL并入检索器训练中,以展示PiCL在ODQA基准测试中的有效性及所学模型的鲁棒性。