Directed acyclic graphs (DAGs) with hidden variables are often used to characterize causal relations between variables in a system. When some variables are unobserved, DAGs imply a notoriously complicated set of constraints on the distribution of observed variables. In this work, we present entropic inequality constraints that are implied by $e$-separation relations in hidden variable DAGs with discrete observed variables. The constraints can intuitively be understood to follow from the fact that the capacity of variables along a causal pathway to convey information is restricted by their entropy; e.g. at the extreme case, a variable with entropy $0$ can convey no information. We show how these constraints can be used to learn about the true causal model from an observed data distribution. In addition, we propose a measure of causal influence called the minimal mediary entropy, and demonstrate that it can augment traditional measures such as the average causal effect.
翻译:带有隐藏变量的定向环形图(DAGs)通常用于描述系统中变量之间的因果关系。当一些变量未观测到时,DAGs意味着对所观察到变量的分布有一套臭名昭著的复杂限制。在这项工作中,我们展示了由美元分隔关系隐含的、带有离散观察变量的隐性可变数字图(DAGs)所隐含的昆虫不平等限制。这些限制可以直觉理解,因为沿因果路径传递信息的变量的能力受到其信箱的限制;例如,在极端情况下,一个带有 entropy $0 的变量不能传递任何信息。我们展示了如何利用这些限制来从所观察到的数据分布中了解真实的因果模型。此外,我们提出了一种称为最小介质的因果影响尺度,并表明它能够增强诸如平均因果效应等传统计量标准。