Introduced in the 1990s in the context of the algebraic approach to graph rewriting, gs-monoidal categories are symmetric monoidal categories where each object is equipped with the structure of a commutative comonoid. They arise for example as Kleisli categories of commutative monads on cartesian categories, and as such they provide a general framework for effectful computation. Recently proposed in the context of categorical probability, Markov categories are gs-monoidal categories where the monoidal unit is also terminal, and they arise for example as Kleisli categories of commutative affine monads, where affine means that the monad preserves the monoidal unit. The aim of this paper is to study a new condition on the gs-monoidal structure, resulting in the concept of weakly Markov categories, which is intermediate between gs-monoidal categories and Markov ones. In a weakly Markov category, the morphisms to the monoidal unit are not necessarily unique, but form a group. As we show, these categories exhibit a rich theory of conditional independence for morphisms, generalising the known theory for Markov categories. We also introduce the corresponding notion for commutative monads, which we call weakly affine, and for which we give two equivalent characterisations. The paper argues that these monads are relevant to the study of categorical probability. A case at hand is the monad of finite non-zero measures, which is weakly affine but not affine. Such structures allow to investigate probability without normalisation within an elegant categorical framework.


翻译:引入于1990年代的gs-单子范畴是对图重写的代数方法的一种扩展,它是对称单子范畴,其中每个对象都具有交换余半群的结构。例如,在笛卡尔范畴上的交换单子上的Kleisli范畴中,它们出现,并且作为这样的范畴,它们为效率计算提供了一个通用框架。最近在概率论范畴中提出的Markov范畴是gs-单子范畴,其中单子幺元也是终端对象,并且它们出现例如作为仿射交换单子的Kleisli范畴,其中仿射意味着单子将维护单子幺元。本文的目的是研究gs-单子范畴的新条件,形成了弱Markov范畴的概念,它介于gs-单子范畴和Markov范畴之间。在弱Markov范畴中,到单子幺元的态射不一定唯一,但形成一个群。正如我们所表明的那样,这些范畴呈现出条件独立性理论的丰富性,其概括了已知的Markov范畴理论。我们还引入了交换单子的相应概念,称为弱仿射单子,并为其给出了两个等价描述。本文认为这些单子与概率论的研究相关。一个有代表性的案例是有限非零测度的单子,它是弱仿射的但不是仿射的。这样的结构允许在一个优雅的范畴框架内研究无正则化的概率。

0
下载
关闭预览

相关内容

【牛津大学博士论文】量子自然语言处理范畴论,270页pdf
专知会员服务
20+阅读 · 2022年12月16日
干货书!基于单调算子的大规模凸优化,348页pdf
专知会员服务
48+阅读 · 2022年7月24日
【经典书】统计学中的因果推断,156页pdf
专知会员服务
91+阅读 · 2022年6月14日
Python图像处理,366页pdf,Image Operators Image Processing in Python
【纽约大学】最新《离散数学》笔记,451页pdf
专知会员服务
128+阅读 · 2020年5月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
一文读懂依存句法分析
AINLP
16+阅读 · 2019年4月28日
Gartner:2019 年 MSP 魔力象限
云头条
15+阅读 · 2019年3月6日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
92+阅读 · 2021年5月17日
VIP会员
相关VIP内容
【牛津大学博士论文】量子自然语言处理范畴论,270页pdf
专知会员服务
20+阅读 · 2022年12月16日
干货书!基于单调算子的大规模凸优化,348页pdf
专知会员服务
48+阅读 · 2022年7月24日
【经典书】统计学中的因果推断,156页pdf
专知会员服务
91+阅读 · 2022年6月14日
Python图像处理,366页pdf,Image Operators Image Processing in Python
【纽约大学】最新《离散数学》笔记,451页pdf
专知会员服务
128+阅读 · 2020年5月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
一文读懂依存句法分析
AINLP
16+阅读 · 2019年4月28日
Gartner:2019 年 MSP 魔力象限
云头条
15+阅读 · 2019年3月6日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
相关基金
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员