项目名称: 两类量子逻辑代数结构的研究
项目编号: No.11201279
项目类型: 青年科学基金项目
立项/批准年度: 2013
项目学科: 数理科学和化学
项目作者: 颉永建
作者单位: 陕西师范大学
项目金额: 22万元
中文摘要: 量子逻辑考虑的是量子物理系统的事件对应的命题演算,效应代数及伪效应代数是目前量子逻辑研究的主要模型. 任何格效应代数可以表示成MV-代数的并, 但是如何由MV-代数粘合成格效应代数仍然是开问题. 本项目拟给出由一族MV-代数粘合成格效应代数的新方法,特别地利用正交模格与格效应代数的关系给出由正交模格得到格效应代数的方法. 作为对格效应代数粘合方法的应用, 拟对格效应代数的内部结构进行刻画,并构造出一些具有特殊态空间的格效应代数. n-完全伪效应代数是一类重要的伪效应代数,本项目拟利用n-完全伪效应代数中的无限小元及离散态的性质, 给出n-完全伪效应代数同构于整数群与偏序群的字典序乘积的一个区间的充分必要条件, 并建立n-完全伪效应代数与偏序群之间的范畴等价关系. 这将为进一步研究非阿基米德伪效应代数的结构奠定重要的理论基础,同时建立了量子逻辑与偏序群之间的新关系.
中文关键词: 量子逻辑;效应代数;粘合;偏序群;量子测度
英文摘要: Quantum logics consider the propositional calculus corresponding to the quantum physical system events, and effect algebras and pseudo-effect algebras are the main mathematical models of quantum logics. Any lattice ordered effect algebra can be written as a set theoretical union of MV-algebras, however, how to paste a lattice ordered effect algebra with a given family of MV-algebras is still an open question. In this project, we will give the new techniques to paste a lattice ordered effect algebra with a family of MV-algebras. Especially, based on the relationship between the orthomodular lattices and lattice ordered effect algebras, we will suggest the way to obtain a lattice ordered effect algebra through an orthomodular lattice. Then, using the pasting techniques, we will characterize the internal algebraic constructions of lattice ordered effect algebras and construct some lattice ordered effect algebras admitting special state spaces. The n-perfect pseudo-effect algebra is one of the important classes of pseudo-effect algebras. Based on the properties of the infinitesimal elements and the discrete states of n-perfect pseudo-effect algebras, we will provide the sufficient and necessary conditions so that an n-perfect pseudo-effect algebra is isomorphic to an interval of the lexicographical product
英文关键词: quantum logics;effect algebras;pasting;partial ordered groups;quantum measures