This paper proposes a category-level 6D object pose and shape estimation approach iCaps, which allows tracking 6D poses of unseen objects in a category and estimating their 3D shapes. We develop a category-level auto-encoder network using depth images as input, where feature embeddings from the auto-encoder encode poses of objects in a category. The auto-encoder can be used in a particle filter framework to estimate and track 6D poses of objects in a category. By exploiting an implicit shape representation based on signed distance functions, we build a LatentNet to estimate a latent representation of the 3D shape given the estimated pose of an object. Then the estimated pose and shape can be used to update each other in an iterative way. Our category-level 6D object pose and shape estimation pipeline only requires 2D detection and segmentation for initialization. We evaluate our approach on a publicly available dataset and demonstrate its effectiveness. In particular, our method achieves comparably high accuracy on shape estimation.
翻译:本文建议了一个6D对象的类别化和形状估计方法 iCaps i, 从而能够跟踪一个类别中未见物体的6D构成并估计其3D形状。 我们利用深度图像开发一个分类层面的自动编码网络, 将自动编码器的特性嵌入一个类别中物体的编码。 自动编码器可以在粒子过滤框架中用于估计和跟踪一个类别中物体的6D构成。 通过利用基于签名距离功能的隐含形状表示, 我们建立了一个 LenttentNet, 以根据一个对象的估计形状来估计3D形状的潜在表示。 然后, 估计的形状和形状可以用迭接方式更新对方。 我们的6D类别对象的形状和形状估计只需要2D探测和分解即可初始化。 我们评估了我们关于公开数据集的方法,并展示了其有效性。 特别是, 我们的方法在形状估计上取得了相当高的精确度。