Consistent motion estimation is fundamental for all mobile autonomous systems. While this sounds like an easy task, often, it is not the case because of changing environmental conditions affecting odometry obtained from vision, Lidar, or the wheels themselves. Unsusceptible to challenging lighting and weather conditions, radar sensors are an obvious alternative. Usually, automotive radars return a sparse point cloud, representing the surroundings. Utilizing this information to motion estimation is challenging due to unstable and phantom measurements, which result in a high rate of outliers. We introduce a credible and robust probabilistic approach to estimate the ego-motion based on these challenging radar measurements; intended to be used within a loosely-coupled sensor fusion framework. Compared to existing solutions, evaluated on the popular nuScenes dataset and others, we show that our proposed algorithm is more credible while not depending on explicit correspondence calculation.
翻译:对所有移动自主系统来说,持续运动估算是基本的基础。 虽然这听起来像一个简单的任务,但往往不是因为环境条件的变化而影响到从视觉、利达尔或轮子本身获得的odography。对于挑战照明和天气条件来说,雷达传感器是一个显而易见的替代方法。通常,汽车雷达返回一个稀疏的点云,代表周围。利用这一信息来移动估算具有挑战性,因为不稳定和幽灵的测量结果导致高离子率。我们采用可靠和有力的概率方法,根据这些具有挑战性的雷达测量结果来估计自我感动;打算在一个松散的混合传感器框架内使用。与现有的解决方案相比,我们根据流行的核星数据集和其他数据进行评估,我们表明我们提议的算法在不依赖明确的通信计算的同时更加可信。