Integrated sensing and communication (ISAC) systems provide significant enhancements in performance and resource efficiency compared to individual sensing and communication systems, primarily attributed to the collaborative use of wireless resources, radio waveforms, and hardware platforms. The performance limits of a system are crucial for guiding its design; however, the performance limits of integrated sensing and communication (ISAC) systems remain an open question. This paper focuses on the bistatic ISAC systems with dispersed multi-receivers and one sensor. Compared to the monostatic ISAC systems, the main challenge is that that the communication messages are unknown to the sensor and thus become its interference, while the channel information between the transmitters and the sensor is unknown to the transmitters. In order to mitigate the interference at the sensor while maximizing the communication degree of freedom, we introduce the blind interference alignment strategy for various bistatic ISAC settings, including interference channels, MU-MISO channels, and MU-MIMO channels. Under each of such system, the achieved ISAC tradeoff points by the proposed schemes in terms of communication and sensing degrees of freedom are characterized, which outperforms the time-sharing between the two extreme sensing-optimal and communication-optimal points.Simulation results also demonstrate that the proposed schemes significantly improve on the ISAC performance compared to treating interference as noise at the sensor.
翻译:暂无翻译