Large-scale fine-grained image retrieval has two main problems. First, low dimensional feature embedding can fasten the retrieval process but bring accuracy reduce due to overlooking the feature of significant attention regions of images in fine-grained datasets. Second, fine-grained images lead to the same category query hash codes mapping into the different cluster in database hash latent space. To handle these two issues, we propose a feature consistency driven attention erasing network (FCAENet) for fine-grained image retrieval. For the first issue, we propose an adaptive augmentation module in FCAENet, which is selective region erasing module (SREM). SREM makes the network more robust on subtle differences of fine-grained task by adaptively covering some regions of raw images. The feature extractor and hash layer can learn more representative hash code for fine-grained images by SREM. With regard to the second issue, we fully exploit the pair-wise similarity information and add the enhancing space relation loss (ESRL) in FCAENet to make the vulnerable relation stabler between the query hash code and database hash code. We conduct extensive experiments on five fine-grained benchmark datasets (CUB2011, Aircraft, NABirds, VegFru, Food101) for 12bits, 24bits, 32bits, 48bits hash code. The results show that FCAENet achieves the state-of-the-art (SOTA) fine-grained retrieval performance compared with other methods.
翻译:首先,低维的嵌入功能可以加快检索过程,但会降低准确性,因为人们忽略了微深层数据集中图像的显著关注区域的特征。第二,微细的刻入图像导致在数据库散列潜藏空间的不同组群中绘制相同的类别查询散记代码。为了处理这两个问题,我们建议为微深重图像的检索建立一个以特征为驱动的删除关注网络(FCAENet)。关于第一个问题,我们提议在FCAENet中建立一个适应性增强模块,这是选择性区域时代模块(SREM)。 微细的图像的细重关注区域特征被忽略了。 其次,微细重的图像导致同一类别查询的散装代码被映射到数据库的不同组中。 关于第二个问题,我们充分利用双向相似的信息,并在FCAENet中添加增强的空间关系损失(ESRL),这是选择性区域时代时代模块(SREM)。SREM使微缩缩图任务之间的细微差异更加强大。