In this paper, we make the very first attempt to investigate the integration of deep hash learning with vehicle re-identification. We propose a deep hash-based vehicle re-identification framework, dubbed DVHN, which substantially reduces memory usage and promotes retrieval efficiency while reserving nearest neighbor search accuracy. Concretely,~DVHN directly learns discrete compact binary hash codes for each image by jointly optimizing the feature learning network and the hash code generating module. Specifically, we directly constrain the output from the convolutional neural network to be discrete binary codes and ensure the learned binary codes are optimal for classification. To optimize the deep discrete hashing framework, we further propose an alternating minimization method for learning binary similarity-preserved hashing codes. Extensive experiments on two widely-studied vehicle re-identification datasets- \textbf{VehicleID} and \textbf{VeRi}-~have demonstrated the superiority of our method against the state-of-the-art deep hash methods. \textbf{DVHN} of $2048$ bits can achieve 13.94\% and 10.21\% accuracy improvement in terms of \textbf{mAP} and \textbf{Rank@1} for \textbf{VehicleID (800)} dataset. For \textbf{VeRi}, we achieve 35.45\% and 32.72\% performance gains for \textbf{Rank@1} and \textbf{mAP}, respectively.
翻译:在本文中, 我们第一次尝试调查深度散列学习与车辆再识别的整合 。 我们提出一个深重散列车辆再识别框架, 称为 DVHN, 以大大降低内存用量, 提高检索效率, 同时保留最近的邻居搜索精度 。 具体来说, ~ DVHN 通过共同优化特性学习网络和散列代码模块, 直接学习每张图像的离散压缩二进制散编码 。 具体地说, 我们直接限制 convolual 神经网络的输出为离散的二进制代码, 并确保所学的二进制代码是最佳的分类 。 为了优化深离散车辆再识别框架, 我们进一步提议一种交替最小化的最小化方法, 学习二进制相似度预防散的散列码 。 具体地说, 有关两部广泛研究的车辆再识别数据集 -\ textb{ VehlicID} 和 hexlef lax_b} (21\ DVHN\\\\\ lix lex salate) a.