Label assignment in object detection aims to assign targets, foreground or background, to sampled regions in an image. Unlike labeling for image classification, this problem is not well defined due to the object's bounding box. In this paper, we investigate the problem from a perspective of distillation, hence we call Label Assignment Distillation (LAD). Our initial motivation is very simple, we use a teacher network to generate labels for the student. This can be achieved in two ways: either using the teacher's prediction as the direct targets (soft label), or through the hard labels dynamically assigned by the teacher (LAD). Our experiments reveal that: (i) LAD is more effective than soft-label, but they are complementary. (ii) Using LAD, a smaller teacher can also improve a larger student significantly, while soft-label can't. We then introduce Co-learning LAD, in which two networks simultaneously learn from scratch and the role of teacher and student are dynamically interchanged. Using PAA-ResNet50 as a teacher, our LAD techniques can improve detectors PAA-ResNet101 and PAA-ResNeXt101 to $46 \rm AP$ and $47.5\rm AP$ on the COCO test-dev set. With a strong teacher PAA-SwinB, we improve the PAA-ResNet50 to $43.9\rm AP$ with only \1x schedule training, and PAA-ResNet101 to $47.9\rm AP$, significantly surpassing the current methods. Our source code and checkpoints will be released at https://github.com/cybercore-co-ltd/CoLAD_paper.
翻译:目标检测中的标签标签任务旨在将目标( 前景或背景) 指定给图像中的抽样区域。 与图像分类标签不同, 这个问题没有很好地定义, 因为对象的绑定框。 在本文中, 我们从蒸馏角度来调查问题, 因此我们叫标签蒸馏( LAD ) 。 我们最初的动机非常简单, 我们使用教师网络为学生创建标签。 可以通过两种方式实现这一点: 要么使用教师的预测作为直接目标( 软标签), 要么通过教师动态指定的硬标签( LAD ) 。 我们的实验显示:(一) LAD 比软标签更有效, 但是它们是互补的。 (二) 使用LAD, 一个更小的教师也可以大大改善一个更大的学生, 而软标签不能。 我们随后引入了共同学习LAD, 两个网络同时从刮伤中学习, 师生的作用是动态交换的。 使用PAAAAA- Res- Resard Or 方法作为教师, 我们的LA- real- $901 和 AS- AS- AS- 101- AS- AS- AS- AS- AS- AS- ASyal ASyal 将我们的L 提升 提高到 提高到 提高到 提高到 提高到 提高到 上一个强的考试。