Mask R-CNN 源代码终上线,Facebook 开源目标检测平台—Detectron

2018 年 1 月 24 日 AI100
Mask R-CNN 源代码终上线,Facebook 开源目标检测平台—Detectron

Example Mask R-CNN output


Facebook AI 研究院(FAIR)昨日开源了一款目标检测平台—Detectron,基于Python和Caffe2搭建,其目标是为目标检测研究提供高质量,高性能的代码库。Detectron 包含Mask R-CNN、RetinaNet、Faster R-CNN、RPN、Fast R-CNN以及R-FCN 这些目标检测算法的实现。


Detectron 简介


Detectron 是 FAIR 用于实现最先进的目标检测算法(包括 Mask R-CNN)的软件系统。该系统基于深度学习框架 Caffe 2 ,由 Python 编写而成。


截至营长发稿,目前Detectron在Github上已经获得了5388颗星。



目前,Detectron 已经支持许多研究项目,包括:


  • Feature Pyramid Networks for Object Detectionhttps://arxiv.org/abs/1612.03144

  • Mask R-CNNhttps://arxiv.org/abs/1703.06870

  • Detecting and Recognizing Human-Object Interactionshttps://arxiv.org/abs/1704.07333

  • Focal Loss for Dense Object Detectionhttps://arxiv.org/abs/1708.02002

  • Non-local Neural Networks (https://arxiv.org/abs/1711.07971)

  • Learning to Segment Every Thing (https://arxiv.org/abs/1711.10370)

  • Data Distillation: Towards Omni-Supervised Learning (https://arxiv.org/abs/1712.04440)


FAIR 创建 Detectron 是为了向目标检测研究提供高质量、高性能的代码库。它拥有足够的灵活性,可以支持最新研究的快速实施和评估。Detectron 目前囊括了以下对象检测算法的实现:


  • Mask R-CNN (https://arxiv.org/abs/1703.06870)

  • RetinaNet (https://arxiv.org/abs/1708.02002)

  • Faster R-CNN (https://arxiv.org/abs/1506.01497)

  • RPN (https://arxiv.org/abs/1506.01497)

  • Fast R-CNN (https://arxiv.org/abs/1504.08083)

  • R-FCN (https://arxiv.org/abs/1605.06409)


主要使用以下主干网络体系结构:


  • ResNeXt{50,101,152} (https://arxiv.org/abs/1611.05431)

  • ResNet{50,101,152} (https://arxiv.org/abs/1512.03385)

  • Feature Pyramid Networks (https://arxiv.org/abs/1612.03144)

  • VGG16 (https://arxiv.org/abs/1409.1556)


此外,我们在 Detectron Model Zoo 中提供了大量的基准结果和训练模型以供下载。(https://github.com/facebookresearch/Detectron/blob/master/MODEL_ZOO.md


如何安装Detectron


详细安装信息,请参考:

https://github.com/facebookresearch/Detectron/blob/master/INSTALL.md


要求:

1.NVIDIA GPU, Linux, Python2

2.Caffe2(请确已将Caffe2升级至支持Detectron模块的版本)和 COCO API


依赖安装

Caffe2安装详见:

https://caffe2.ai/docs/getting-started.html

COCO API:

https://github.com/cocodataset/cocoapi


Detectron安装

Clone the Detectron repository:


# DETECTRON=/path/to/clone/detectron

git clone https://github.com/facebookresearch/detectron $DETECTRON


设置Python模块:


cd $DETECTRON/lib && make


检查Detectron测试通过(比如SpatialNarrowAsOp测试):


python2 $DETECTRON/tests/test_spatial_narrow_as_op.py


接下来就可以使用Detectron预训练模型进行推理了。


关于安装以及其他问题,请见:

https://github.com/facebookresearch/Detectron/blob/master/INSTALL.md



招聘

新一年,AI科技大本营的目标更加明确,有更多的想法需要落地,不过目前对于营长来说是“现实跟不上灵魂的脚步”,因为缺人~~


所以,AI科技大本营要壮大队伍了,现招聘AI记者和资深编译,有意者请将简历投至:gulei@csdn.net,期待你的加入!


如果你暂时不能加入营长的队伍,也欢迎与营长分享你的精彩文章,投稿邮箱:suiling@csdn.net


如果以上两者你都参与不了,那就加入AI科技大本营的读者群,成为营长的真爱粉儿吧!后台回复:读者群,加入营长的大家庭,添加营长请备注自己的姓名,研究方向,营长邀请你入群。


热文精选


开发者AI职业指南:CSDN《AI技术人才成长路线图V1.0》重磅发布

企业智能化升级之路:CSDN《2017-2018中国人工智能产业路线图V1.0》重磅发布

蒋涛:重新回归的我,将带领CSDN全方位升级,为AI转型者打造一站式平台

速成班出来的AI人才,老板到底要不要?6位导师告诉你行业真相

AI行业求生之路:做算法的去养鸡场,做语音的卖鸡蛋,做视觉的送蛋炒饭

程序员如何一夜暴富?这里有一份比特币价格预测指南

2018 年了,该不该下定决心转型AI呢?

先搞懂这八大基础概念,再谈机器学习入门!

这三个普通程序员,几个月就成功转型AI,他们的经验是...

干货 | AI 工程师必读,从实践的角度解析一名合格的AI工程师是怎样炼成的



☟☟☟点击 | 阅读原文 | 查看更多精彩内容

登录查看更多
7

相关内容

R-CNN的全称是Region-CNN,它可以说是是第一个成功将深度学习应用到目标检测上的算法。传统的目标检测方法大多以图像识别为基础。 一般可以在图片上使用穷举法选出所所有物体可能出现的区域框,对这些区域框提取特征并使用图像识别方法分类, 得到所有分类成功的区域后,通过非极大值抑制(Non-maximumsuppression)输出结果。

We present a conceptually simple, flexible, and general framework for object instance segmentation. Our approach efficiently detects objects in an image while simultaneously generating a high-quality segmentation mask for each instance. The method, called Mask R-CNN, extends Faster R-CNN by adding a branch for predicting an object mask in parallel with the existing branch for bounding box recognition. Mask R-CNN is simple to train and adds only a small overhead to Faster R-CNN, running at 5 fps. Moreover, Mask R-CNN is easy to generalize to other tasks, e.g., allowing us to estimate human poses in the same framework. We show top results in all three tracks of the COCO suite of challenges, including instance segmentation, bounding-box object detection, and person keypoint detection. Without bells and whistles, Mask R-CNN outperforms all existing, single-model entries on every task, including the COCO 2016 challenge winners. We hope our simple and effective approach will serve as a solid baseline and help ease future research in instance-level recognition. Code has been made available at: https://github.com/facebookresearch/Detectron

0
7
下载
预览
小贴士
相关资讯
如何评价FAIR最新开源的Detectron2目标检测框架?
极市平台
15+阅读 · 2019年10月14日
资源丨用PyTorch实现Mask R-CNN
量子位
6+阅读 · 2018年7月23日
整合全部顶尖目标检测算法:FAIR开源Detectron
炼数成金订阅号
6+阅读 · 2018年1月25日
【资源】整合全部顶尖目标检测算法:FAIR开源Detectron
GAN生成式对抗网络
4+阅读 · 2018年1月24日
从R-CNN到Mask R-CNN
机器学习研究会
23+阅读 · 2017年11月13日
相关VIP内容
专知会员服务
99+阅读 · 2020年3月12日
专知会员服务
43+阅读 · 2020年2月26日
相关论文
Clustered Object Detection in Aerial Images
Fan Yang,Heng Fan,Peng Chu,Erik Blasch,Haibin Ling
4+阅读 · 2019年8月27日
Golnaz Ghiasi,Tsung-Yi Lin,Ruoming Pang,Quoc V. Le
7+阅读 · 2019年4月16日
Xuesong Li,Jose E Guivant,Ngaiming Kwok,Yongzhi Xu
7+阅读 · 2019年1月24日
Yihui He,Xiangyu Zhang,Marios Savvides,Kris Kitani
4+阅读 · 2018年9月23日
Tiny-DSOD: Lightweight Object Detection for Resource-Restricted Usages
Yuxi Li,Jiuwei Li,Weiyao Lin,Jianguo Li
5+阅读 · 2018年7月29日
Guanglu Song,Yu Liu,Ming Jiang,Yujie Wang,Junjie Yan,Biao Leng
4+阅读 · 2018年4月14日
Zhishuai Zhang,Siyuan Qiao,Cihang Xie,Wei Shen,Bo Wang,Alan L. Yuille
11+阅读 · 2018年4月8日
Qianhui Luo,Huifang Ma,Yue Wang,Li Tang,Rong Xiong
8+阅读 · 2018年2月21日
Kaiming He,Georgia Gkioxari,Piotr Dollár,Ross Girshick
7+阅读 · 2018年1月24日
Top