Compared with object detection in static images, object detection in videos is more challenging due to degraded image qualities. An effective way to address this problem is to exploit temporal contexts by linking the same object across video to form tubelets and aggregating classification scores in the tubelets. In this paper, we focus on obtaining high quality object linking results for better classification. Unlike previous methods that link objects by checking boxes between neighboring frames, we propose to link in the same frame. To achieve this goal, we extend prior methods in following aspects: (1) a cuboid proposal network that extracts spatio-temporal candidate cuboids which bound the movement of objects; (2) a short tubelet detection network that detects short tubelets in short video segments; (3) a short tubelet linking algorithm that links temporally-overlapping short tubelets to form long tubelets. Experiments on the ImageNet VID dataset show that our method outperforms both the static image detector and the previous state of the art. In particular, our method improves results by 8.8% over the static image detector for fast moving objects.

3
下载
关闭预览

相关内容

目标检测,也叫目标提取,是一种与计算机视觉和图像处理有关的计算机技术,用于检测数字图像和视频中特定类别的语义对象(例如人,建筑物或汽车)的实例。深入研究的对象检测领域包括面部检测和行人检测。 对象检测在计算机视觉的许多领域都有应用,包括图像检索和视频监视。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等

Detecting objects in aerial images is challenging for at least two reasons: (1) target objects like pedestrians are very small in pixels, making them hardly distinguished from surrounding background; and (2) targets are in general sparsely and non-uniformly distributed, making the detection very inefficient. In this paper, we address both issues inspired by observing that these targets are often clustered. In particular, we propose a Clustered Detection (ClusDet) network that unifies object clustering and detection in an end-to-end framework. The key components in ClusDet include a cluster proposal sub-network (CPNet), a scale estimation sub-network (ScaleNet), and a dedicated detection network (DetecNet). Given an input image, CPNet produces object cluster regions and ScaleNet estimates object scales for these regions. Then, each scale-normalized cluster region is fed into DetecNet for object detection. ClusDet has several advantages over previous solutions: (1) it greatly reduces the number of chips for final object detection and hence achieves high running time efficiency, (2) the cluster-based scale estimation is more accurate than previously used single-object based ones, hence effectively improves the detection for small objects, and (3) the final DetecNet is dedicated for clustered regions and implicitly models the prior context information so as to boost detection accuracy. The proposed method is tested on three popular aerial image datasets including VisDrone, UAVDT and DOTA. In all experiments, ClusDet achieves promising performance in comparison with state-of-the-art detectors. Code will be available in \url{https://github.com/fyangneil}.

0
4
下载
预览

Accurate detection and tracking of objects is vital for effective video understanding. In previous work, the two tasks have been combined in a way that tracking is based heavily on detection, but the detection benefits marginally from the tracking. To increase synergy, we propose to more tightly integrate the tasks by conditioning the object detection in the current frame on tracklets computed in prior frames. With this approach, the object detection results not only have high detection responses, but also improved coherence with the existing tracklets. This greater coherence leads to estimated object trajectories that are smoother and more stable than the jittered paths obtained without tracklet-conditioned detection. Over extensive experiments, this approach is shown to achieve state-of-the-art performance in terms of both detection and tracking accuracy, as well as noticeable improvements in tracking stability.

0
3
下载
预览

We introduce and tackle the problem of zero-shot object detection (ZSD), which aims to detect object classes which are not observed during training. We work with a challenging set of object classes, not restricting ourselves to similar and/or fine-grained categories as in prior works on zero-shot classification. We present a principled approach by first adapting visual-semantic embeddings for ZSD. We then discuss the problems associated with selecting a background class and motivate two background-aware approaches for learning robust detectors. One of these models uses a fixed background class and the other is based on iterative latent assignments. We also outline the challenge associated with using a limited number of training classes and propose a solution based on dense sampling of the semantic label space using auxiliary data with a large number of categories. We propose novel splits of two standard detection datasets - MSCOCO and VisualGenome, and present extensive empirical results in both the traditional and generalized zero-shot settings to highlight the benefits of the proposed methods. We provide useful insights into the algorithm and conclude by posing some open questions to encourage further research.

0
8
下载
预览

In this paper, we propose an efficient and fast object detector which can process hundreds of frames per second. To achieve this goal we investigate three main aspects of the object detection framework: network architecture, loss function and training data (labeled and unlabeled). In order to obtain compact network architecture, we introduce various improvements, based on recent work, to develop an architecture which is computationally light-weight and achieves a reasonable performance. To further improve the performance, while keeping the complexity same, we utilize distillation loss function. Using distillation loss we transfer the knowledge of a more accurate teacher network to proposed light-weight student network. We propose various innovations to make distillation efficient for the proposed one stage detector pipeline: objectness scaled distillation loss, feature map non-maximal suppression and a single unified distillation loss function for detection. Finally, building upon the distillation loss, we explore how much can we push the performance by utilizing the unlabeled data. We train our model with unlabeled data using the soft labels of the teacher network. Our final network consists of 10x fewer parameters than the VGG based object detection network and it achieves a speed of more than 200 FPS and proposed changes improve the detection accuracy by 14 mAP over the baseline on Pascal dataset.

0
5
下载
预览

As we move towards large-scale object detection, it is unrealistic to expect annotated training data for all object classes at sufficient scale, and so methods capable of unseen object detection are required. We propose a novel zero-shot method based on training an end-to-end model that fuses semantic attribute prediction with visual features to propose object bounding boxes for seen and unseen classes. While we utilize semantic features during training, our method is agnostic to semantic information for unseen classes at test-time. Our method retains the efficiency and effectiveness of YOLO for objects seen during training, while improving its performance for novel and unseen objects. The ability of state-of-art detection methods to learn discriminative object features to reject background proposals also limits their performance for unseen objects. We posit that, to detect unseen objects, we must incorporate semantic information into the visual domain so that the learned visual features reflect this information and leads to improved recall rates for unseen objects. We test our method on PASCAL VOC and MS COCO dataset and observed significant improvements on the average precision of unseen classes.

0
5
下载
预览

In this paper, we study object detection using a large pool of unlabeled images and only a few labeled images per category, named "few-example object detection". The key challenge consists in generating trustworthy training samples as many as possible from the pool. Using few training examples as seeds, our method iterates between model training and high-confidence sample selection. In training, easy samples are generated first and, then the poorly initialized model undergoes improvement. As the model becomes more discriminative, challenging but reliable samples are selected. After that, another round of model improvement takes place. To further improve the precision and recall of the generated training samples, we embed multiple detection models in our framework, which has proven to outperform the single model baseline and the model ensemble method. Experiments on PASCAL VOC'07, MS COCO'14, and ILSVRC'13 indicate that by using as few as three or four samples selected for each category, our method produces very competitive results when compared to the state-of-the-art weakly-supervised approaches using a large number of image-level labels.

0
7
下载
预览

We address the problem of detecting objects in videos with the interest in exploring temporal contexts. Our core idea is to link objects in the short and long ranges for improving the classification quality. Our approach first proposes a set of candidate spatio-temporal cuboids, each of which serves as a container associating the object across short range frames, for a short video segment. It then regresses the precise box locations in each frame over each cuboid proposal, yielding a tubelet with a single classification score which is aggregated from the scores of the boxes in the tubelet. Third, we extend the non-maximum suppression algorithm to remove spatially-overlapping tubelets in the short segment, avoiding tubelets broken by the frame-wise NMS. Finally, we link the tubelets across temporally-overlapping short segments over the whole video, in order to boost the classification scores for positive detections by aggregating the scores in the linked tubelets. Experiments on the ImageNet VID dataset shows that our approach achieves the state-of-the-art performance.

0
6
下载
预览

Detecting objects and estimating their pose remains as one of the major challenges of the computer vision research community. There exists a compromise between localizing the objects and estimating their viewpoints. The detector ideally needs to be view-invariant, while the pose estimation process should be able to generalize towards the category-level. This work is an exploration of using deep learning models for solving both problems simultaneously. For doing so, we propose three novel deep learning architectures, which are able to perform a joint detection and pose estimation, where we gradually decouple the two tasks. We also investigate whether the pose estimation problem should be solved as a classification or regression problem, being this still an open question in the computer vision community. We detail a comparative analysis of all our solutions and the methods that currently define the state of the art for this problem. We use PASCAL3D+ and ObjectNet3D datasets to present the thorough experimental evaluation and main results. With the proposed models we achieve the state-of-the-art performance in both datasets.

0
5
下载
预览

This paper addresses the problem of estimating and tracking human body keypoints in complex, multi-person video. We propose an extremely lightweight yet highly effective approach that builds upon the latest advancements in human detection and video understanding. Our method operates in two-stages: keypoint estimation in frames or short clips, followed by lightweight tracking to generate keypoint predictions linked over the entire video. For frame-level pose estimation we experiment with Mask R-CNN, as well as our own proposed 3D extension of this model, which leverages temporal information over small clips to generate more robust frame predictions. We conduct extensive ablative experiments on the newly released multi-person video pose estimation benchmark, PoseTrack, to validate various design choices of our model. Our approach achieves an accuracy of 55.2% on the validation and 51.8% on the test set using the Multi-Object Tracking Accuracy (MOTA) metric, and achieves state of the art performance on the ICCV 2017 PoseTrack keypoint tracking challenge.

0
7
下载
预览

We present a method for detecting objects in images using a single deep neural network. Our approach, named SSD, discretizes the output space of bounding boxes into a set of default boxes over different aspect ratios and scales per feature map location. At prediction time, the network generates scores for the presence of each object category in each default box and produces adjustments to the box to better match the object shape. Additionally, the network combines predictions from multiple feature maps with different resolutions to naturally handle objects of various sizes. Our SSD model is simple relative to methods that require object proposals because it completely eliminates proposal generation and subsequent pixel or feature resampling stage and encapsulates all computation in a single network. This makes SSD easy to train and straightforward to integrate into systems that require a detection component. Experimental results on the PASCAL VOC, MS COCO, and ILSVRC datasets confirm that SSD has comparable accuracy to methods that utilize an additional object proposal step and is much faster, while providing a unified framework for both training and inference. Compared to other single stage methods, SSD has much better accuracy, even with a smaller input image size. For $300\times 300$ input, SSD achieves 72.1% mAP on VOC2007 test at 58 FPS on a Nvidia Titan X and for $500\times 500$ input, SSD achieves 75.1% mAP, outperforming a comparable state of the art Faster R-CNN model. Code is available at https://github.com/weiliu89/caffe/tree/ssd .

0
4
下载
预览
小贴士
相关论文
Clustered Object Detection in Aerial Images
Fan Yang,Heng Fan,Peng Chu,Erik Blasch,Haibin Ling
4+阅读 · 2019年8月27日
Zheng Zhang,Dazhi Cheng,Xizhou Zhu,Stephen Lin,Jifeng Dai
3+阅读 · 2018年11月27日
Zero-Shot Object Detection
Ankan Bansal,Karan Sikka,Gaurav Sharma,Rama Chellappa,Ajay Divakaran
8+阅读 · 2018年7月27日
Rakesh Mehta,Cemalettin Ozturk
5+阅读 · 2018年5月16日
Pengkai Zhu,Hanxiao Wang,Tolga Bolukbasi,Venkatesh Saligrama
5+阅读 · 2018年3月19日
Xuanyi Dong,Liang Zheng,Fan Ma,Yi Yang,Deyu Meng
7+阅读 · 2018年2月14日
Peng Tang,Chunyu Wang,Xinggang Wang,Wenyu Liu,Wenjun Zeng,Jingdong Wang
6+阅读 · 2018年1月30日
Daniel Oñoro-Rubio,Roberto J. López-Sastre,Carolina Redondo-Cabrera,Pedro Gil-Jiménez
5+阅读 · 2018年1月24日
Rohit Girdhar,Georgia Gkioxari,Lorenzo Torresani,Manohar Paluri,Du Tran
7+阅读 · 2017年12月26日
Wei Liu,Dragomir Anguelov,Dumitru Erhan,Christian Szegedy,Scott Reed,Cheng-Yang Fu,Alexander C. Berg
4+阅读 · 2016年12月29日
相关VIP内容
相关资讯
视频目标识别资源集合
专知
14+阅读 · 2019年6月15日
Unsupervised Learning via Meta-Learning
CreateAMind
32+阅读 · 2019年1月3日
Soft-NMS – Improving Object Detection With One Line of Code
统计学习与视觉计算组
6+阅读 · 2018年3月30日
视频超分辨 Detail-revealing Deep Video Super-resolution 论文笔记
统计学习与视觉计算组
17+阅读 · 2018年3月16日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
17+阅读 · 2017年11月5日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
【推荐】深度学习目标检测全面综述
机器学习研究会
17+阅读 · 2017年9月13日
【推荐】深度学习目标检测概览
机器学习研究会
9+阅读 · 2017年9月1日
Top