In this technical report, we present our approaches for the continual object detection track of the SODA10M challenge. We adapt ResNet50-FPN as the baseline and try several improvements for the final submission model. We find that task-specific replay scheme, learning rate scheduling, model calibration, and using original image scale helps to improve performance for both large and small objects in images. Our team `hypertune28' secured the second position among 52 participants in the challenge. This work will be presented at the ICCV 2021 Workshop on Self-supervised Learning for Next-Generation Industry-level Autonomous Driving (SSLAD).
翻译:在这份技术报告中,我们介绍了我们为SODA10M挑战的连续物体探测轨迹所采取的方法,我们把ResNet50-FPN作为基准,并尝试对最后提交模型进行若干改进,我们发现,这一任务特定的重播计划、学习进度安排、模型校准以及使用原始图像比例有助于改善图像中大小物体的性能,我们的“Hypertune28”团队在52名参与者中占据了第二个要害位置,这项工作将在国际电算中心2021年关于为下一代创业工业自主驾驶进行自我监督学习的讲习班(ISLAD)上介绍。