在计算机图像处理和计算机图形学中,图像缩放(image scaling)是指对数字图像的大小进行调整的过程。图像缩放是一种非平凡的过程,需要在处理效率以及结果的平滑度(smoothness)和清晰度(sharpness)上做一个权衡。当一个图像的大小增加之后,组成图像的像素的可见度将会变得更高,从而使得图像表现得“软”。相反地,缩小一个图像将会增强它的平滑度和清晰度。

最新内容

Compared to 2D object bounding-box labeling, it is very difficult for humans to annotate 3D object poses, especially when depth images of scenes are unavailable. This paper investigates whether we can estimate the object poses effectively when only RGB images and 2D object annotations are given. To this end, we present a two-step pose estimation framework to attain 6DoF object poses from 2D object bounding-boxes. In the first step, the framework learns to segment objects from real and synthetic data in a weakly-supervised fashion, and the segmentation masks will act as a prior for pose estimation. In the second step, we design a dual-scale pose estimation network, namely DSC-PoseNet, to predict object poses by employing a differential renderer. To be specific, our DSC-PoseNet firstly predicts object poses in the original image scale by comparing the segmentation masks and the rendered visible object masks. Then, we resize object regions to a fixed scale to estimate poses once again. In this fashion, we eliminate large scale variations and focus on rotation estimation, thus facilitating pose estimation. Moreover, we exploit the initial pose estimation to generate pseudo ground-truth to train our DSC-PoseNet in a self-supervised manner. The estimation results in these two scales are ensembled as our final pose estimation. Extensive experiments on widely-used benchmarks demonstrate that our method outperforms state-of-the-art models trained on synthetic data by a large margin and even is on par with several fully-supervised methods.

0
0
下载
预览

最新论文

Compared to 2D object bounding-box labeling, it is very difficult for humans to annotate 3D object poses, especially when depth images of scenes are unavailable. This paper investigates whether we can estimate the object poses effectively when only RGB images and 2D object annotations are given. To this end, we present a two-step pose estimation framework to attain 6DoF object poses from 2D object bounding-boxes. In the first step, the framework learns to segment objects from real and synthetic data in a weakly-supervised fashion, and the segmentation masks will act as a prior for pose estimation. In the second step, we design a dual-scale pose estimation network, namely DSC-PoseNet, to predict object poses by employing a differential renderer. To be specific, our DSC-PoseNet firstly predicts object poses in the original image scale by comparing the segmentation masks and the rendered visible object masks. Then, we resize object regions to a fixed scale to estimate poses once again. In this fashion, we eliminate large scale variations and focus on rotation estimation, thus facilitating pose estimation. Moreover, we exploit the initial pose estimation to generate pseudo ground-truth to train our DSC-PoseNet in a self-supervised manner. The estimation results in these two scales are ensembled as our final pose estimation. Extensive experiments on widely-used benchmarks demonstrate that our method outperforms state-of-the-art models trained on synthetic data by a large margin and even is on par with several fully-supervised methods.

0
0
下载
预览
Top