We present a centralized algorithm for labeled, disk-shaped Multi-Robot Path Planning (MPP) in a continuous planar workspace with polygonal boundaries. Our method automatically transform the continuous problem into a discrete, graph-based variant termed the pebble motion problem, which can be solved efficiently. To construct the underlying pebble graph, we identify inscribed circles in the workspace via a medial axis transform and organize robots into layers within each inscribed circle. We show that our layered pebble-graph enables collision-free motions, allowing all graph-restricted MPP instances to be feasible. MPP instances with continuous start and goal positions can then be solved via local navigations that route robots from and to graph vertices. We tested our method on several environments with high robot-packing densities (up to $61.6\%$ of the workspace). For environments with narrow passages, such density violates the well-separated assumptions made by state-of-the-art MPP planners, while our method achieves an average success rate of $83\%$.
翻译:我们在一个带有多边形边界的连续平面工作空间中为标签的磁盘形多机器人路径规划(MPP)提供了一种中央算法。 我们的方法将连续的问题自动转换成一个离散的、基于图形的变体,称为可以有效解决的石块运动问题。 为了构建基底的石块图, 我们通过介质轴将机器人在工作空间中刻上一个圆圈, 并将机器人组织成每个被标圈内的层层。 我们显示, 我们的层形平方形平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面。 我们用高机器人包装密度高(工作空间高达61.6 美元)的若干环境测试了我们的方法。 对于狭窄的通道环境,这种密度违反了由最先进的MPPP规划员平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面,我们平均成功率率率率率率率达83美元。