The functional demands of robotic systems often require completing various tasks or behaviors under the effect of disturbances or uncertain environments. Of increasing interest is the autonomy for dynamic robots, such as multirotors, motor vehicles, and legged platforms. Here, disturbances and environmental conditions can have significant impact on the successful performance of the individual dynamic behaviors, referred to as "motion primitives". Despite this, robustness can be achieved by switching to and transitioning through suitable motion primitives. This paper contributes such a method by presenting an abstraction of the motion primitive dynamics and a corresponding "motion primitive transfer function". From this, a mixed discrete and continuous "motion primitive graph" is constructed, and an algorithm capable of online search of this graph is detailed. The result is a framework capable of realizing holistic robustness on dynamic systems. This is experimentally demonstrated for a set of motion primitives on a quadrupedal robot, subject to various environmental and intentional disturbances.
翻译:机器人系统的功能要求往往需要完成在扰动或不确定环境影响下的各种任务或行为。 越来越令人感兴趣的是动态机器人的自主性, 如多色机器人、机动车辆和脚踏平台。 这里, 扰动和环境条件可以对个人动态行为的成功表现产生重大影响, 被称为“ 感动原始人 ” 。 尽管如此, 仍然可以通过转换和转换合适的运动原始人来实现稳健性。 本文通过对运动原始动态进行抽象化和相应的“ 感动原始转移功能” 来提供这样一种方法。 在此过程中, 构建了一个混合的离散和连续的“ 感动原始图 ”, 并详细说明了能够在线搜索该图的算法。 结果是一个能够实现动态系统整体稳健的框架。 这是实验性地证明, 一组运动原始人可以在四重机械上运动, 受到各种环境和故意干扰。